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Abstract— To study the automation of plant-level precision
irrigation, specifically learning-based irrigation controllers, we
present a modular, open-source testbed that enables real-time,
fine-grained data collection and irrigation actuation. RAPID-
MOLT costs USD $600 and has floor space of 0.37m

2.
The functionality of the platform is evaluated by measuring
the correlation between plant growth (Leaf Area Index) and
water stress (Crop Water Stress Index) with irrigation volume.
In line with biological studies, the observed plant growth is
positively correlated with irrigation volume while water stress
is negatively correlated. Construction directions, experimental
data, CAD models, and related software are available at
github.com/BerkeleyAutomation/RAPID-MOLT.

I. INTRODUCTION

Precision irrigation aims to optimize water usage, crop

yield, and crop quality. This field has gained momentum in

recent years as concerns over efficient use of water resources

and groundwater contamination grow. In areas with more

than 40% of the worlds population, global water demand

already surpasses supply, and agricultural irrigation places

the largest strain on this dwindling resource as it accounts

for about 75% of the world’s managed freshwater supply

[1], [2]. However, plants absorb only between 5% to 30%

of this water [2]. As a result of over-watering, nitrate fer-

tilizers leach back into groundwater, thereby contaminating

freshwater sources [3]. Moreover, crop yield and quality are

not directly correlated to irrigation volume beyond a certain

level. For many plants, including grapes, maintaining a crop

water deficit has been shown to produce higher quality yield

[4].

To optimize for Water Use Efficiency (WUE) and plant

yield at scale, precision agriculture focuses on three key

components: (1) affordable remote sensing, (2) spatially vari-

able irrigation actuation, and (3) robust, adaptive irrigation

controllers. Promising research is being conducted on remote

sensing methods, such as Unmanned Aerial Vehicle (UAV)

based multispectral imaging [5] and soil moisture sensors.

The Robot Assisted Precision Irrigation Delivery (RAPID)

project has focused on the delivery of per-plant, precise

irrigation with a co-robotic approach for adjusting irrigation

emitters [6]. Efficient irrigation policies that consider data

such as crop phenotype, growth stage, leaf area, soil and
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Fig. 1. The RAPID-MOLT with a sensing unit consisting of environmental
sensing, multispectral imaging, and an actuation unit in which 20 solenoids
can deliver different variable irrigation rates to 20 pots. Sensing and
actuation is controlled with an Arduino Uno and Raspberry Pi.

field characteristics, and climate conditions have also been

studied [7].

However, crop irrigation simulators and applied control

approaches have largely focused on zone-level instead of

plant-level irrigation schedules. Thus, although spatially and

temporally dense multispectral image sensing can provide

very localized plant data, limited work has applied this to

precision irrigation.

We present a low-cost, open-source, experimental testbed

to study the potential for automating plant-level precision

irrigation controllers. The contributions are as follows:

1) A hardware system design that enables both plant level

sensing with multispectral imaging and also precise

irrigation control with Raspberry Pi actuated solenoids.

2) A software infrastructure and data processing pipeline

to evaluate irrigation controllers, including the auto-

matic extraction of Leaf Area Index and Crop Water

Stress Index from RGB and thermal images.

3) Data from two experiments with different plants, mea-

suring plant growth and water stress data in response

to different irrigation schedules.



II. RELATED WORK

A. Existing Platforms for Precision Agriculture

There are several existing platforms with features required

for irrigation control. The Farmbot is a CNC style mech-

anism that consists of a plot for plants and a modular

set of interchangeable tools [8]. The tools can execute

a variety of tasks including soil moisture sensing, RGB

imaging, planting, weeding, and irrigating. The platform is

completely open-source, with users encouraged to develop

their own tools. The basic assembly kit is priced at USD

$2, 595. Tencent and Wageningen University’s “Greenhouse

Competition” challenged researchers to develop irrigation

controllers with which to autonomously cultivate cucumbers

for four months inside a greenhouse [9]. Teams provided

their own sensors and cameras with which to collect plant

and environmental data. While this competition provides

researchers with a platform to deploy experimental models,

these platforms are not open-source for the community to

utilize and build upon. Finally, as the internet of things

expands, products providing smart irrigation have multiplied.

However many of these products rely either on manual timer

adjustment; such as products from Claber and Oysir; or on

weather trends, such as products from Rachio, RainMachine,

and Netro [10], [11], [12], [13], [14], [15]. While these

options offer great utility to the average home grower, they

do not enable plant-level control.

B. Remote plant and Environmental Sensing

Environmental and crop data collection has seen an ex-

plosion of remote sensing technologies, including soil mois-

ture sensing, multispectral sensing, in which images can

be acquired over many wavelengths, and the use of RF

waves in existing Wi-Fi bands [16]. These methods serve

as proxies for conventional, manual methods of crop water

status assessment such as leaf conductance and stem potential

[17]. Direct soil moisture sensing data must be extracted

from multiple physical sensors, and data resolution is heavily

dependent on the number of sensors available [15].

Multispectral sensing as deployed through local, UAV,

or satellite imaging, has potential to be proxy for manual,

ground-truth measurements of parameters such as leaf con-

ductance, stem potential, and root potential predictions [4].

These methods offer plant-level precision data without the

cost of additional sensor installation, and could be used

to data on both plant and environmental states including

parameters such as Crop Water Stress Index (CWSI), Leaf

Area Index (LAI), soil temperature, and canopy chlorophyll

index. Multispectral technology has also been used in moni-

toring plant diseases, pests, and the spread of invasive plant

species; estimating crop yield; and finely classifying crop

distributions [18]. As of 2016, the agricultural market for

drones alone was estimated at a value of USD $500 billion

[19]. Private satellite companies such as Planet or Hyper-

Sat LLC are developing services that deliver daily global

multispectral imaging to a variety of industries [20], [21].

As the commercial options for multispectral imaging are

expanding, we chose it as the primary method of precision

sensing for the Meso-Scale, Open-Source, Low-Cost Testbed

(RAPID-MOLT) system.

C. Plant State Characterization

The success of multispectral imaging is due to the es-

tablishment of multiple canopy temperature based proxies

for plant water state measurements (leaf conductance or

stem potential). Early research discovering a linear rela-

tionship between leaf-air temperature difference and vapor

pressure deficit, the difference between current air moisture

and air moisture at saturation, laid the groundwork for

using leaf temperature for irrigation scheduling [22]. Three

different temperature indices followed: Stress Degree Day

(SDD), the canopy-air temperature difference measured at

the time of maximum heat, Temperature Stress Day (TSD),

the difference in canopy temperatures between stressed crop

and non-stressed reference crop, and Critical Temperature

Variability (CTV), the range of temperatures measured in a

plot [23]. Each of these indices were shown to be unreli-

able or impractical for a variety of reasons: Gardner et al.

demonstrated that stressed corn plants were mostly below air

temperature confirming that a negative SDD is not enough

to accurately signal water stress, TSD requires that a non-

stressed reference plot be maintained near a testing site, and

the selection of a critical CTV value relies on soil variability,

which is difficult to quantify [23], [24].

The shortcomings of these indices led researchers to derive

a new index, CWSI, from a combined energy balance-

aerodynamic relation used to predict evaporation from natu-

ral surfaces [25]–[28]:

CWSI =
Tleaf − Twet

Tdry − Twet

(1)

where Tleaf is the leaf temperature measured, Twet is the

leaf temperature of a well-watered, non-stressed plant leaf,

and Tdry is the temperature of a reference plant leaf with

no transpiration. Meron et al. further simplified the index

by estimating Twet using a Wet Artificial Reference Surface

(WARS) instead of a non-stressed reference plant, and, as

proposed in earlier studies, by estimating Tdry as follows

[29], [30].

Tdry = Tair + 5°C (2)

In 2007, Moller et al. compared these approximations of

Tdry and Twet to other suggested approximation methods,

and found the highest degree of correlation between leaf

conductance and CWSI with the use of Equation 2 and

a WARS [4]. For this, Tleaf was gathered through RGB

masking of canopy thermal images [4].

In addition to parameters characterizing water state, in-

dices representing growth have also been developed for re-

mote sensing technologies. The most widely used parameter

is the Leaf Area Index LAI =
Aleaf

Aground
, a dimensionless

ratio of the one sided leaf area, Aleaf , per ground area,

Aground [31].

For RAPID-MOLT we use Equations 1 and 2 to measure

crop water stress and LAI to characterize plant growth.



Fig. 2. Data and Irrigation flow. The sensing unit consists of (a) an Arduino
Uno, (b) FLIR One Gen 2 Dual RGB/Thermal Camera, (c) light dependent
resistor, (d) ambient Temperature Sensor, and (e) Android phone (Google
Nexus 5) to collect FLIR images and upload to the cloud. Data can be used
to adjust irrigation scheduling, which is executed by the Raspberry Pi. The
irrigation unit consists of (f) one water pump, (g) 20 solenoids, (h) 20 drip
emitters, (i) one Raspberry Pi, and (j) 20 electrical relays.

D. Variable Irrigation Delivery

The RAPID project is investigating plant-level adjustable

drip emitters as well as a robotic platform and routing

algorithms for their efficient adjustment in the field [6],

[32]–[35]. However, the majority of work into irrigation

deployment has focused on zone-level, where, for simplicity,

the soil and plant states inside of a large zone are assumed

to be homogeneous. Variable rate pivot irrigation is one

instance of this [36]. Here, crops are irrigated by sprinklers

that rotate about a pivot at a rate that adjusts to incoming

precision sensing data. The sprinkler, designed to maximize

the number of crops reached at once, delivers zone-level

irrigation, and it is thus difficult to predict the volume

of water that each plant is receiving. The lack of low-

cost, open-source platforms for precision irrigation delivery

is a key missing link in researchers’ efforts to develop

robust irrigation controllers and motivates the development

of RAPID-MOLT.

III. DESIGN

A. Motivation and Design Considerations

A research platform conducive to the development of

precise irrigation controllers requires both precision sensing

and methods for precision irrigation deployment. Additional

objectives are as follows: (1) low unit cost, (2) meso-

scale platform size to fit an indoor laboratory setting, (3)

maximized number of pots to enable the collection of a

large and varied dataset, (4) data that can be remotely

accessed and processed, and (5) open-source documentation.

The following sections detail how the platform was designed

for each objective.

B. Hardware Design

RAPID-MOLT consists of the (1) Frame holding the plant

pots, (2) Sensing Unit, and (3) Irrigation Unit (Figure 3).

TABLE I
RAPID-MOLT COMPONENTS COST AND SPECIFICATIONS.

TOTAL COST IS USD $610

.

Item Cost
[USD$]

Specs

1x FLIR One Gen 2 250.00 Thermal Resolution: 160x120
RGB Resolution: 640x480
Sensitivity: 0.1°C
Spectral range: 8 to 14m
Field of View: 46°x 35°

20x Solenoid 149.80 12V
1x Google Nexus 5 100.00 Display Size: 126 mm

Display Resolution: 10801920
pixels

1x Raspberry Pi 31.10 Lan Speed: 10/100Mbps
No. USB ports: 4
No. GPIO pins: 40

1x Arduino Uno 21.43 Operating Voltage: 5V
Microcontroller: ATmega328P

1x Water Pump 16.31 12 V, 4.3 L/min, 35 psi
1x Relay* 16 channel 14.99 12V
20x Emitter 9.68 Flowrate: 0.5 gph

Pressure Range: 10 to 45 psi
1x Relay* 8 channel 8.59 5V
1x Ambient Tempera-
ture Sensor

4.95 Accuracy: 0.25°C
Range: -40°C to +125°C
Precision: 0.0625°C.

1x Light Dependent
Resistor (LDR)

0.17 0.6 Ohms/Lux
Spectral Range: 400 to 700 nm

*Note: Two relay panels (8 channel and 16 channel) were combined to
obtain the 20 channels necessary to have on relay per pot.

These units function together as shown in Figure 2.

The base is designed to minimize both cost and space

and consists of a frame assembled from aluminum 8020

extrusion (0.812 x 0.457 x 1.600 m); an acrylic laser-cut top

plate with forty through-holes, twenty for pots and twenty

for stationary irrigation tubes; and a stationary mount for the

Forward-Looking Infrared Radar (FLIR) camera. Stationary

mounts were used to avoid large costs associated with the

precision machining of a robust linear rail. The modular top

plate is connected to the base with four mounting holes, and

pot through-holes are sized at 70mm to support cups at the

lip. Irrigation tube through-holes are sized at 6.35mm. Each

of these dimensions can be easily modified to account for

various amounts and types of pots and tubing, all contributing

to the modularity of the system. For multispectral sensing,

the FLIR One, Gen 2 dual RGB/Thermal camera is enclosed

in a stationary camera mount. With our focus on precision

irrigation, a thermal camera, which utilizes a far infrared

spectrum, was chosen following its use in a plethora of

studies showing temperature to be an accurate proxy for

crop water status. A limitation of this low-cost model is that

it must be paired with an Android phone, for which, the

inexpensive Google Nexus 5 is selected. To fit the platform

in the FLIR field of view, the camera is mounted 66cm above

the top plate plane. Finally, disposable, clear plastic cups

with a 72 mm opening diameter are selected as plant pots

to further minimize cost. Cup transparency allows further

investigation of the soil and seeds’ growth during the growing

cycle.

The Sensing Unit, Figure 2, consists of an ambient light

sensor, ambient temperature sensor, Arduino Uno for the



collection of this ambient data, and a FLIR One Gen 2

dual RGB/Thermal camera for multispectral imaging of

plant parameters. Ambient light data provides context on

how sunlight affects temperature throughout data collection,

and ambient temperature data is used to calculate Tdry as

required in Equations 1 and 2. The light sensor, with a

relatively low sensitivity, provides us with ambient lighting

trends rather than reliable magnitudes. Temperature and

incident light data is collected with an Arduino Uno, but can

also be collected with the Raspberry Pi that is controlling

the actuation unit.

The Irrigation Unit, as shown in Figure 3 consists of a

water pump, Raspberry Pi computer, one electric relay panel,

solenoid actuator, and a low-flow drip emitter (1.9 liter/hour)

for each of the twenty pots. Solenoid actuation is selected

for variable irrigation deployment in line with its use in

similar products such as the Farmbot. The low flow-rate

emitters are used for their ability to deliver precise irrigation

amounts. The Raspberry Pi, also the computer of choice

for the Farmbot, is selected for its low-cost, connectivity

capabilities, and its large open-source community. The water

supply is routed from an external refillable container, through

a solenoid actuator that is controlled by an electric relay.

Sufficient pneumatic tubing is required for the routing of

the water supply. Each relay is actuated by the Raspberry

Pi, which can be set to autonomously respond to plant and

environmental data that is collected by the sensing unit.

Angled, 3D-printed, risers are placed at the exit of each

irrigation tube to ensure proper tube fixation and delivery of

water to each pot. Power must be supplied to the irrigation

unit through a standard 110 V outlet.

For the frame, sensing unit, and actuation unit, each

component is chosen to minimize overall platform cost

while ensuring sufficient accuracy. Each component can be

replaced with instruments of higher precision. Cost and

specifications for each of the components are listed in Table

I. Documentation detailing ordering information for each

listed part is included on the project website.

C. Software Design

The primary goal of the RAPID-MOLT software is a

modular design to allow for the addition of sensors, the

customization of the data processing, and the seamless im-

plementation of different controllers. Therefore, the software

is split into three parts: (1) the sensing software, (2) the data

processing software, (3) the actuator control software.

1) Sensing Software: The sensing software consists of an

Arduino script that logs ambient temperature and incident

light readings (Figure 2.b, 2.c), and a simple Android appli-

cation that uploads the resulting multispectral images to the

cloud. The data acquisition and upload rates are configurable.

2) Data Processing Software: The data processing

pipeline runs daily. Raw images and sensor data are down-

loaded from the cloud and archived locally. First, twenty

circular masks are created to distinguish each pot. To create

these masks, color thresholding of orange, the color of

Fig. 3. CAD Model of the frame and irrigation delivery unit. The Raspberry
Pi, water pump, 20 solenoids, and 16 and 8 channel relay panels are shown.
Irrigation tubing and electrical wiring is omitted for better visualization.

this specific platform’s top plate, is executed in the Hue-

Saturation-Intensity (HSV) color space to mask out the

background. The pot mask is then cleaned in OpenCV

using Morphological Transformations with circular structur-

ing elements to detect individual pot contours and centers.

Pot centers are then labeled and ordered according to a

specified pot numbering system. A circle is drawn around

each, resulting in 20 clean circular masks, one for each pot

location as seen in Figure 4.

Next, Leaf Area Index LAI =
Aleaf

Aground
(section II-C)

which serves as our plant growth metric, is calculated from

the RGB image [31]. For this, a second mask consisting

only of the plant leaves is created by applying threshold

values for the leaf color to the RGB image in the HSV

color space. This plant leaf mask is intersected with each

of the 20 pot masks computed in the previous step resulting

in 20 pot-leaf masks. Based on these, the ratio of pixels

corresponding to leaf surface to total pot pixels for each

pot is calculated to obtain a reasonable approximation of

the LAI . The process is visualized in Figure 4. Specific

threshold values in the HSV color space are chosen once

at the beginning of the experiment by manually inspecting

masking results for images with different light conditions.

The twenty pot-leaf masks are then applied to the thermal

images to extract all thermal image pixels corresponding to

leaf surface pixels, as shown in Figure 4. The pot-specific

leaf temperature, Tleaf , is determined by the median of

the leaf-temperature-pixels. Pixel median was chosen for

robustness to outliers that may be produced by imperfect

masking.

Finally, plant state data (Tleaf and LAI) is aligned with

environmental state data collected by the Arduino Uno

(ambient air temperature Tair and incident light Lincident)

based on time stamps. This comprehensive data is then

available for an irrigation controller to determine a suitable

irrigation schedule, in which irrigation is specified as seconds

of solenoid actuation per plant. As water volume deployed



Raw RGB Leaf-Masked 
RGB (with LAI)

Raw Thermal Image Leaf-Masked Thermal 
(with Median Temp)
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Fig. 4. The image processing pipeline from left to right for a subset of the
platform with the wet reference surface (WARS) on the top left. Starting
with the raw RGB, the leafs of the plants are masked and LAI is calculated
for each pot. The leaf mask is then applied to the raw thermal image and
then for each pot the median temperature is taken as Tleaf .

is reliant on the duration of a solenoid actuation, a platform-

specific calibration must be executed to relate these two

quantities. The irrigation decision, specified in a csv file,

can then be sent to the Raspberry Pi for execution.

3) Actuation Software: The actuation software on the

Raspberry Pi executes the irrigation actuation by opening and

closing the Solenoids at the right times. For the experiments

minute scale sensing and daily actuation cycles are selected

but this can be adjusted as desired.

D. Limitations

As a result of the design objectives stated in Section III-

A, the platform is subject to some inherent limitations. In

attempting to both size the platform for an indoor laboratory

setting as well as maximizing the number of individual

pots, the size of the plants that can be grown is directly

constrained. Additionally, the platform’s dependence on one

Raspberry Pi limits the number of available General Purpose

Input/Output (GPIO) ports, and therefore testable pots, to

twenty-six. To increase the number of pots the platform

would require a GPIO expansion board and/or and additional

Raspberry Pi. A third limitation experienced during image

processing is the growth of plant leaves past pot diameters.

Due to the pot masking only the leaves inside of pot are

taken into account for both LAI and Tleaf measurement.

To prevent this, pots should be spaced according to expected

growth patterns of experimental plants used.

IV. EVALUATION EXPERIMENTS

To evaluate the platform’s ability to monitor individual

plant growth and plant water stress, two experiments mon-

itoring plant responses to varying levels of irrigation are

conducted. Both plant growth and water stress are useful as

feedback control signals for automated precision irrigation.

To characterize actuation error and determine the func-

tion of solenoid actuation (in seconds) to volume of water

delivered (mL), a calibration test of the irrigation unit is

conducted. To match the implemented range of 1s to 6s of

solenoid actuation time, five runs are conducted at solenoid

actuation times of 2s, 4s, and 6s. Output volumes are

Fig. 5. Half of the RAPID-MOLT pots shown on the 8th day of the
experiment monitoring grass growth under variable irrigation. The figure
shows the raw RGB image (left side) from which the leaf masks and LAI

values for each pot (right side) are extracted. The bottom left pot received
0.72mL of irrigation, increasing up to 1.41mL for the top left, continuing
with the second column upwards ending at 2.08mL at the middle top right
pot. The right part shows the left RGB image processed via the data pipeline.
As can be seen the LAI values correlate positively with the daily applied
irrigation input.

measured for each run. The average standard deviation of

the output volumes is 0.1023 mL.

A. Experiment 1: Monitoring Plant Growth

In the first experiment, crop growth under differential

irrigation is monitored for two consecutive weeks. Nineteen

pots are filled with a mixture of soil and 70 grass seeds of

the type “Pennington Smart Seed Sun and Shade”. Gras and

specifically those seeds were selected for their fast germina-

tion and growth cycles which allow for swift evaluation of

RAPID-MOLT’s growth monitoring capability. All plants are

potted with a 0.5 cm layer of stones placed above a hole in

the pot bottom. This allows for the drainage of superfluous

water but prevents the drainage of soil.

Different irrigation durations are applied to each pot, from

a solenoid actuation per day of 1s up to 5.75s, with steps of

0.25s. This corresponds to irrigation volumes from 0.73 to

3.12 mL. Pots were irrigated at noon. Multispectral images,

temperature, and incident light readings are taken every ten

minutes for two consecutive weeks. Figure 5 shows an RGB

image from the eighth day of the experiment labelled with

LAI values derived from the image processing pipeline

detailed in section III-C.

As hourly measurements are noisy, only the daily me-

dian LAI value is used, producing 19 LAI measurements,

one per pot, over 14 days (Figure IV-A). Noise in hourly

measurements is largely due to changing light conditions

that affect the thresholds for HSV filtering in the image

processing pipeline.
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Fig. 6. This plot shows the development of the daily mean LAI of 19 pots
with grass seeds planted on day 0 and different daily irrigation amounts.
The LAI value, as proxy for plant growth, is obtained from the RGB image
over the time of two weeks. Daily irrigation growth correlates with LAI
growth, however exceptions occur as shown in upper right and discussed in
the text.
The colors indicate the different amounts of daily irrigation applied. We can
see that little daily irrigation correlates with slower LAI growth.

During the experiment, it was observed that grass ger-

minated and sprouted on approximately the third day after

planting, resulting in an increase of LAI . There onwards,

plant growth rates (LAI) diverged, tracking their differential

irrigation levels. This behavior matches general expectations

of plant growth and also matched visual observations over

the course of the experiment. Grass receiving the most

irrigation grew to a LAI of 0.75 over 14 days whereas

the least irrigated grass pot achieved a LAI of 0.12. The

flattening of the LAI growth curves toward the end of the

experiment do not necessarily indicate slowing plant growth,

and is likely results from the inherent limitation of top-view

RGB imaging in which vertical leaf-growth is difficult to

detect. Additionally, the LAI curves in Figure IV-A are not

increasing monotonically. Specifically, there are two jumps

in LAI , seen on the fourth and seventh day. This is likely

due to especially bright lighting conditions on those days,

as observed when reviewing experimental data (similar to

Figure 4).

While the experimental data shows a significant correlation

of plant growth and daily irrigation volume, the LAI curves

in Figure IV-A are not strictly ordered according to irrigation

volumes. One possible explanation is heterogeneous initial

conditions, i.e. different amounts of soil and seeds between

pots. Other sources of error could include natural fluctuations

in seed germination rates, noise in the FLIR imaging, or

imperfect LAI extraction through the image processing

pipeline. However, it is notable that even with homogeneous

initial conditions, images devoid of noise, and perfect image

processing, the plant growth would likely still vary due to

different phenotypes in the biological populations.

LAI provides a valuable signal for automated precision

irrigation. To study the relationship between individual plant

growth (LAI) and irrigation, further experiments with wider

leaf plants are planned.

B. Experiment 2: Plant water stress response to irrigation

In this experiment CWSI is measured for different irriga-

tion amounts over six consecutive days. Nineteen Pak Choi

seedlings (5cm tall) from the local plant nursery are used

as the experimental crop due to their high water sensitivity

and large leaf area as seen in Figure 4. One pot, designated

as the WARS surface, is covered with two layers of a

thin cotton cloth and irrigated every fifteen minutes for

five seconds thereby providing the wet reference surface

needed to measure Twet [29]. To reduce the uneven heating

patterns induced by uneven direct sunlight, this experiment

is performed without direct sunlight exposure. Each plant

is watered sufficiently for two days prior to the experiment

start so as to bring all nineteen plants to a standardized,

non-stressed water state. The plants are randomly divided

into three groups, to which the following different irrigation

volumes (seconds of solenoid actuation time) are applied:

0ml (0s, no irrigation), 2.85ml (5s), 10.8 ml (20s). Plants

are irrigated over six days, at 4:00pm each day. Multispectral

images, temperature, and incident light readings are taken

every 5 minutes to ensure temporally dense observations.

As shown in Figure 8, the initially equal CWSI of well

watered plants (close to zero) changes depending on the

applied irrigation schedule. While it is observed that both

zero daily irrigation and limited daily irrigation causes an

increase in CWSI, zero irrigation results in significantly more

water stress (a higher CWSI). Daily irrigation of 10.8 ml of

water produces a CWSI value that fluctuates around zero,

signalling no water stress. These results are qualitatively

comparable to results of a similar experiment conducted by

biologists, where CWSI and ground truth water stress was

measured with high-quality instruments [37]. In this 2002

experiment, well-watered plants were divided into one group

that received zero irrigation, and another group that received

sufficient irrigation to maintain soil moisture at 45% [37]. A

similar increase in CWSI was observed for the water-stressed

plants [37]. This parallel indicates that RAPID-MOLT’s low-

cost sensing hardware is sufficient to sense the water state

of plants with significant leaf area. The fast CWSI response

of plants to deficient irrigation suggests that its usefulness

as feedback signal for irrigation automation.



Fig. 7. The median temperatures Tleaf of each pot shown at 3pm
during our CWSI experiment with Pak Choi seedlings under three different
irrigation schedules. There is a negative correlation between Tleaf and
the amount of irrigation applied to each plant, making Tleaf range from

24.09°C (0 ml
day

) to 25.09°C (10.8 ml
day

)

V. SUMMARY AND FUTURE WORK

We present an open-source, low-cost experimental testbed

for the development and evaluation of plant-level, precision

irrigation controllers. RAPID-MOLT’s modular nature allows

for the extension of platform capabilities through additional

sensors, additional plants of potentially larger size, and

algorithm customization at any layer of the software stack.

A potential limitation of RAPID-MOLT is the quality of

precision sensing data, drawn from a low-cost multispectral

camera and ambient light and temperature sensors. It is

notable that irrigation controllers must be robust to such

noise as multispectral imaging from drones and satellites will

likely contain noise as well.

As lighting conditions also significantly influence the

opening and closing of stomata, thereby affecting Tleaf

and CWSI, future versions of RAPID-MOLT will include

controllable lighting. This addition will directly decrease the

sensitivity of RGB based LAI measurements to lighting

conditions. Initial evaluation results are promising and indi-

cate that RAPID-MOLT can be used for the development of

controllers that can adapt to variability in soil, environment,

and plant conditions. Specifically, we aim to use learning-

based controllers to be able to account for the complexity of

interactions between environmental and plants states.

The CAD models, instructions, order information,

component costs, and code is available at

github.com/BerkeleyAutomation/RAPID-MOLT.
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Fig. 8. This plot shows the development of CWSI for three groups of
initially well-watered Pak Choi plants under different irrigation schedules
over six days. Each point is the group mean CWSI value of the daily mean
CWSI values of the six Pak Choi plants per group. The error bars indicate
the standard error. Increasing water stress resulting from no/little irrigation
is reflected in higher CWSI values.
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