
Article

The International Journal of
Robotics Research
2022, Vol. 41(5) 497–518
© The Author(s) 2022

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/02783649221078031
journals.sagepub.com/home/ijr

Inducing structure in reward learning by
learning features

Andreea Bobu, Marius Wiggert, Claire Tomlin and Anca D Dragan

Abstract
Reward learning enables robots to learn adaptable behaviors from human input. Traditional methods model the reward as
a linear function of hand-crafted features, but that requires specifying all the relevant features a priori, which is impossible
for real-world tasks. To get around this issue, recent deep Inverse Reinforcement Learning (IRL) methods learn rewards
directly from the raw state but this is challenging because the robot has to implicitly learn the features that are important
and how to combine them, simultaneously. Instead, we propose a divide-and-conquer approach: focus human input
specifically on learning the features separately, and only then learn how to combine them into a reward. We introduce a
novel type of human input for teaching features and an algorithm that utilizes it to learn complex features from the raw
state space. The robot can then learn how to combine them into a reward using demonstrations, corrections, or other
reward learning frameworks. We demonstrate our method in settings where all features have to be learned from scratch,
as well as where some of the features are known. By first focusing human input specifically on the feature(s), our method
decreases sample complexity and improves generalization of the learned reward over a deep IRL baseline. We show this
in experiments with a physical 7-DoF robot manipulator, and in a user study conducted in a simulated environment.

Keywords
Learning from humans, inverse reinforcement learning, feature learning

1. Introduction

Whether it is semi-autonomous driving (Sadigh et al.,
2016), recommender systems (Ziebart et al., 2008), or
household robots working in close proximity with people
(Jain et al., 2015), reward learning can greatly benefit au-
tonomous agents to generate behaviors that adapt to new
situations or human preferences. Under this framework, the
robot uses the person’s input to learn a reward function that
describes how they prefer the task to be performed. For in-
stance, in the scenario in Figure 1, the human wants the robot
to keep the cup away from the laptop to prevent spilling liquid
over it; she may communicate this preference to the robot by
providing a demonstration of the task or even by directly
intervening during the robot’s task execution to correct it. After
learning the reward function, the robot can then optimize it to
produce behaviors that better resemble what the person wants.

In order to correctly interpret and efficiently learn from
human input, traditional methods resorted to structuring the
reward as a (linear) function of carefully hand-engineered
features—important aspects of the task (Abbeel and Ng,
2004; Bajcsy et al., 2017; Jain et al., 2015; Ziebart et al.,
2008). Unfortunately, selecting the right space of features is
notoriously challenging, even for expert system designers:
knowing and specifying a priori an exhaustive set of all the
features that might be relevant for the reward is impossible
for most real-world tasks. To bypass this feature

specification problem, state-of-the-art deep IRL methods
(Brown et al., 2020; Finn et al., 2016; Wulfmeier et al.,
2016) learn rewards defined directly on the high-
dimensional raw state (or observation) space, thereby im-
plicitly constructing features automatically from task
demonstrations.

In doing so, however, these approaches sacrifice the
sample efficiency and generalizability that a well-specified
feature set offers. While using an expressive function ap-
proximator to extract features and learn their reward
combination at once seems advantageous, many such
functions can induce policies that explain the demonstra-
tions. Hence, to disambiguate between all these candidate
functions, the robot requires a very large amount of (la-
borious to collect) data, and this data needs to be diverse
enough to identify the true reward. For example, the human
in the household robot setting in Figure 1 might want to
demonstrate keeping the cup away from the laptop, but from

Department of Electrical Engineering and Computer Science, University of
California, Berkeley, CA, USA

Corresponding author:
Andreea Bobu, Department of Electrical Engineering and Computer
Science, University of California Berkeley, 2121 Berkeley Way,
Berkeley, CA 94709, USA.
Email: abobu@berkeley.edu

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/02783649221078031
https://journals.sagepub.com/home/ijr
https://orcid.org/0000-0002-9507-7427
mailto:abobu@berkeley.edu
http://crossmark.crossref.org/dialog/?doi=10.1177%2F02783649221078031&domain=pdf&date_stamp=2022-04-15

a single demonstration the robot could find many other
explanations for the person’s behavior: perhaps they always
happened to keep the cup upright or they really like curved
trajectories in general.

The underlying problem here is that demonstrations—
or task-specific input more broadly—are meant to teach
the robot about the reward and not about the features per
se, so these function approximators struggle to capture
the right feature structure for the reward. In this work, we
argue that the robot does not have to learn everything at
once; instead, it can divide-and-conquer the reward
learning problem and focus on explicitly learning the
features separately from learning how to combine them
into the reward. In our earlier example, if the robot were
taught about the concept of distances to laptops sepa-
rately, it would be able to quickly tell what the person
wants from a single demonstration.

We make the following contributions:
Learning features from a novel type of human input. We

present a method for learning complex non-linear features
separately from the reward (Section 4). We introduce a new
type of human input specifically designed to teach features,
which we call feature traces—partial trajectories that de-
scribe the monotonic evolution of the value of the feature to
be learned. To provide a feature trace, the person guides the
robot from states where the feature is highly expressed to
states where it is not, in a monotonic fashion. Looking at
Figure 1 (Left), the person teaches the robot to avoid the
laptop by giving a few feature traces: she starts with the arm
above the laptop and moves it away until comfortable with
the distance from the object. We present an algorithm that
harvests the structure inherent to feature traces and uses it to
efficiently learn a feature relevant for the reward: in our
example, the horizontal distance from the laptop. In ex-
periments on a 7-DoF robot arm, we find that our method
can learn high quality features closely resembling the
ground truth (Section 6.1).

Demonstrating our feature learning method in a user
study on a simulated 7-DoF robot arm. In a user study with
the JACO2 (Kinova) robotic arm, we show that non-expert
users can use our approach for learning features (Section
6.2). The participants were able to provide feature traces to
teach good features, and found our teaching protocol in-
tuitive. Unfortunately, due to the current pandemic, we
conducted the study online in a simulated environment;
despite the inevitable degradation in input quality that this
entails, the users were still able to teach features that in-
duced informative bias.

Analyzing generalization and sample complexity benefits
of learning features for rewards.We show how our method,
which we call Feature Expansive Reward Learning (FERL)
because it expands the feature set one by one, can improve
reward learning sample complexity and generalization.
First, we look at an easier online reward learning setting like
the one in Figure 1 (Right-Top) where the robot knows part
of the feature set from the get-go, but the person’s pref-
erence also depends on other features not in the set (Section
5.2). We show that, by learning the missing feature, the
robot obtains a more generalizable reward than if it had
trained a deep IRL network directly from the raw state and
the known set (Section 7). We then consider the more
challenging offline reward learning case in Figure 1 (Right-
Bottom) where the person teaches the reward from scratch,
one feature at a time (Section 5.1). We find that the robot
outperforms the baseline most of the time, with less clear
results when the learned features are noisily taught by
novice users in simulation (Section 8).

We note that this work is an extension of Bobu et al.
(2021), which was published at the International Confer-
ence on Human Robot Interaction. We build on this work by
formalizing a general framework for feature-based reward
learning, and instantiating it in a new offline learning setting
where the person can teach each feature one by one before
combining them into a reward. Not only is this offline

Figure 1. (Left) The person teaches the robot the concept of horizontal distance from the laptop by providing a few feature traces. (Right-
Top) In the online reward learning from corrections setting, once the robot detects that its feature set is incomplete, it queries the human
for feature traces that teach it the missing feature and adapts the reward to account for it. (Right-Bottom) In the offline reward learning
from demonstrations setting, the person has to teach the robot each feature separately one at a time using feature traces, and only then
teach their combined reward.

498 The International Journal of Robotics Research 41(5)

setting more commonly encountered in reward learning, but
it also showcases that our approach can be applied more
generally to preference learning from different kinds of
human input.

Overall, this work provides evidence that taking a divide-
and-conquer approach focusing on learning important
features separately before learning the reward improves
sample complexity in reward learning. Although showcased
in manipulation, our method can be used in any robot
learning scenarios where feature learning is beneficial: in
collaborative manufacturing users might care about the
rotation of the object handed over, or in autonomous driving
passengers may care about how fast to drive through curves.

2. Related Work

Programming robot behavior through human input is a well-
established paradigm. In this paradigm, the robot receives
human input and aims to infer a policy or reward function
that captures the behavior the human wants the robot to
express. In imitation learning, the robot directly learns a
policy that imitates demonstrations given by the human
(Osa et al., 2018). The policy learns a correlation between
situations and actions but not why a specific behavior is
desirable. Because of that, imitation learning only works in
the training regime, whereas optimizing a learned reward,
which captures why a behavior is desirable, can generalize
to unseen situations (Abbeel and Ng, 2004).

In the IRL framework, the robot receives demonstrations
through teleoperation (Abbeel and Ng, 2004; Javdani et al.,
2018) or kinesthetic teaching (Argall et al., 2009) and learns
a reward under which these demonstrations are optimal
(Abbeel and Ng, 2004; Russell and Norvig, 2002). Recent
research goes beyond demonstrations, utilizing other types
of human input for reward learning such as corrections
(Bajcsy et al., 2017; Jain et al., 2015), comparisons
(Christiano et al., 2017) and rankings (Brown et al., 2019),
examples of what constitutes a goal (Fu et al., 2018b), or
even specified proxy objectives (Hadfield-Menell et al.,
2017). Depending on the interaction setting, the human
input can be given all-at-once, iteratively, or on specific
requests of the robot in an active learning setting (Brown
et al., 2018; Lopes et al., 2009; Sadigh et al., 2016).

All these methods require less human input if a parsi-
monious representation of the world, which summarizes
raw state information in the form of relevant features, is
available. This is because finite feature sets significantly
reduce the space of possible functions which according to
statistical learning theory reduces the information com-
plexity of the learning problem (Vapnik, 2013). In the
following, we discuss the role of feature representations in
reward learning and methods for learning features.

2.1. Feature representations in reward learning

Traditional reward learning methods rely on a set of
carefully hand-crafted features that capture aspects of the

environment a person may care about. These are selected by
the system designer prior to the task (Abbeel and Ng, 2004;
Bajcsy et al., 2017; Hadfield-Menell et al., 2017; Jain et al.,
2015; Ziebart et al., 2008). If chosen well, this feature set
introduces an inductive bias that enables the algorithms to
find a good estimate of the human’s preferences with limited
input. Unfortunately, selecting such a set in the first place is
notoriously challenging, even for experts like system de-
signers. For one, defining a good feature function can be a
time-consuming trial-and-error process, especially if the
feature is meant to capture a complex aspect of the task
(Wulfmeier et al., 2016). Moreover, the chosen feature
space may not be expressive enough to represent everything
that a person might want (and is giving input about) (Bobu
et al., 2020; Haug et al., 2018). When this is the case, the
system may misinterpret human guidance, perform unex-
pected or undesired behavior, and degrade in overall per-
formance (Amodei and Clark, 2016; Haug et al., 2018;
Russell and Norvig, 2002).

To tackle these challenges that come with hand-
designing a feature set, state-of-the-art deep IRL methods
use the raw state space directly and shift the burden of
extracting behavior-relevant aspects of the environment
onto the function approximator (Finn et al., 2016;
Wulfmeier et al., 2016). The objective of IRL methods is to
learn a reward which induces behavior that matches the state
expectation of the demonstrations. The disadvantage of
such approaches is that they require large amounts of highly
diverse data to learn a reward function which generalizes
across the state space. This is because with expressive
function approximators there exists a large set of functions
that could explain the human input; that is, many reward
functions induce policies that match the demonstrations’
state expectation. The higher dimensional the state, the more
human input is needed to disambiguate between those
functions sufficiently to find a reward function which ac-
curately captures human preferences and thereby general-
izes to states not seen during training and not just replicates
the demonstrations’ state expectations. Thus, when ven-
turing sufficiently far away from the demonstrations the
learned reward in IRL does not generalize which can lead to
unintended behavior (Fu et al., 2018a; Reddy et al., 2020b).

It has been shown that providing linear feature functions
as human input can reduce the risk of unintended behavior
(Haug et al., 2018). In our work, we argue that general-
ization with limited input can be achieved without requiring
hand-crafted features if the robot explicitly learns features,
instead of attempting to learn them implicitly from
demonstrations.

2.2. Learning features

In IRL researchers have explored the direction of inferring a
set of relevant features directly from task demonstrations.
This can take the form of joint Bayesian inference on both
reward and feature parameters (Choi and Kim, 2013) or
projecting the raw state space to lower dimensions via PCA

Bobu et al. 499

on demonstrated trajectories (Vernaza and Bagnell, 2012).
There are also methods that add features iteratively to learn a
non-linear reward, such as Levine et al. (2010), which
constructs logical conjunctions of primitive integer features,
and Ratliff et al. (2007), which trains regression trees to
distinguish expert from non-expert trajectories in a base
feature space. Levine et al. (2010) perform well in discrete-
state MDPs, but is not suitable for continuous state spaces,
does not operate on raw states but rather a hand-engineered
set of integer component features, and requires the reward
structure to be expressible as logical conjunctions. Mean-
while, Ratliff et al. (2007) allows for larger state spaces and
arbitrary continuous rewards, but still relies on engineering
a relevant set of base features and severely underperforms in
the case of non-expert human input when compared to more
recent IRL techniques (Levine et al., 2011; Wulfmeier et al.,
2016). Because of these shortcomings, IRL researchers have
opted recently for either completely hand-specifying the
features or using deep IRL for extracting them automatically
from the raw continuous state space with non-expert
demonstrations (Finn et al., 2016; Fu et al., 2018a).

Rather than relying on demonstrations for everything, we
propose to first learn complex non-linear features leveraging
explicit human input about relevant aspects of the task
(Section 4). Based on these features, a reward can be in-
ferred with minimal input (Section 5). Our results show that
adding structure in such a targeted way can enhance both the
generalization of the learned reward and data-efficiency of
the method.

3. Problem Formulation

We consider a robot R operating in the presence of a human
H from whom it is trying to learn to perform a task, ulti-
mately seeking to enable autonomous execution. In the most
general setting, both H and R are able to affect the evolution
of the continuous state s2R

d (i.e., robot joint poses or
object poses) over time through their respective continuous
actions aH and aR via a dynamics function f

stþ1 ¼ f
�
st, atH , a

t
R

�
(1)

with aH 2AH and aR 2AR, and AH and AR compact sets.
Thus, when executing a task, the robot follows a trajectory
τ ¼ ½s0,a0H ,a0R,s1,a1H ,a1R,…,sT ,aTH ,a

T
R �.

We assume that the human has some consistent internal
preference ordering between different trajectories τ,
which affects the actions aH that they choose. In prin-
ciple, these human preferences could be captured by a
reward function R*(τ). Unfortunately, the robot does not
have access to R*, so to learn how to perform the task it
must attempt to infer it. Since R* may encode arbitrary
preference orderings deeming the inference problem
intractable, we assume that the robot reasons over a
parameterized approximation Rθ induced by parameters θ
2 Θ. The robot’s goal is, thus, to estimate the human’s
preferred θ from their actions aH.

Even with this parameterization, the space of possible
reward functions is infinite-dimensional. One way to rep-
resent it using a finite θ is through the means of a finite family
of basis functionsΦi, also known as features (Ng and Russell,
2000): RθðΦ

!ðτÞÞ, where Φ
!

is the set of chosen features Φi.
Consistent with classical utility theories (Von Neumann and
Morgenstern, 1945), we may decompose trajectory features
Φi into state features fi and approximate the trajectory’s
reward through a cumulative return over time

RθðτÞ ¼ Rθ

�
Φ
!ðτÞ

�
¼

X
ðs,aH ,aRÞ2τ

rθ f
!ðs,aH ,aRÞ
� �

: (2)

This restriction to a finite set of features f
!

is essentially a
truncation of the infinite collection of basis functions spanning
the full reward function space. Thus, the features we choose to
represent the reward dramatically impact the reward functions
that can be learned altogether. Importantly, this observation
holds regardless of the representation power that rθ has (linear
combination, neural network, etc). Motivated by recovering a
reward function rθ that captures the person’s preferences as
best as possible, we are, thus, interested in the question of how
to choose the feature representation f

!
.

We assume the robot has access to a (possibly empty) initial
set of features f

!
. In Section 4, we propose a protocol via which

the robot can learn a novel feature to add to its existing set by
soliciting feature-specific human input. We then describe classic
offline IRL and its adaptation to situations where the human is
teaching the reward from scratch (Section 5.1); our framework
enables them to teach one feature at a time before teaching the
reward on top using task demonstrations. Lastly, we present the
online variant, where the robot executes the task according to a
reward function defined on an incomplete feature set and the
human intervenes to correct it (Section 5.2); our method allows
them to explicitly focus on teaching the missing feature(s) and
adding them to the set before the reward is updated.

4. Algorithmic Approach: Feature Learning

We first look at learning individual feature functions. In this
paper, we focus on state features (ignoring actions from the
feature representation), which we define as arbitrary com-
plex mappings fðsÞ :Rd →R

þ. As such, in regions of the
state space where the feature is highly expressed, this
function has high positive values, whereas for states where
the feature is not expressed, f is closer to zero.

One natural idea for learning this mapping is treating it as
a regression problem and asking the human for regression
labels (s, f(s)) directly. Unfortunately, to learn anything
useful, the robot would need a very large set of labels from
the person, which would be too effortful for them to provide.
Even worse, humans are notoriously unreliable at quanti-
fying their preferences with any degree of precision
(Braziunas and Boutilier, 2008), so their labels might result
in arbitrarily noisy regressions. Hence, we need a type of
human input that balances being informative and not
placing too much burden on the human.

500 The International Journal of Robotics Research 41(5)

4.1 Feature traces

To teach a non-linear representation of f with little data, we
introduce feature traces ξ = s0:n, a novel type of human input
defined as a sequence of n states that are monotonically
decreasing in feature value, that is, f(si) ≥ f(sj), "i < j. This
approach relaxes the need for accurate state labeling, while
simultaneously providing a combinatorial amount of state
comparisons (see Section 4.2 for details) from each trace ξ.

When learning a feature, the robot can query the human
for a set Ξ of N traces. The person gives a trace ξ by simply
moving the system from any start state s0 to an end state sn,
noisily ensuring monotonicity. Our method, thus, only re-
quires an interface for communicating ordered feature values
over states: kinesthetic teaching is useful for household or
small industrial robots, while teleoperation and simulation
interfaces may be better for larger robotic systems.

To illustrate how a human might offer feature traces in
practice, let’s turn to Figure 1 (Left). Here, the person is
teaching the robot to keep the mug away from the laptop
(i.e., not above). The person starts a trace at s0 by placing
the end-effector directly above the object center, then leads
the robot away from the laptop to sn. Our method works
best when the person tries to be informative, that is, covers
diverse areas of the space: the traces illustrated move
radially in all directions and start at different heights.
While for some features, like distance from an object, it is
easy to be informative, for others, like slowing down near
objects, it might be more difficult. We explore how easy it
is for users to be informative in our study in Section 6.2,
with encouraging findings, and discuss alleviating existing
limitations in Section 9.

The power of feature traces lies in their inherent
structure. Our algorithm, thus, makes certain assumptions
to harvest this structure for learning. First, we assume that
the feature values of states along the collected traces ξ 2 Ξ
are monotonically decreasing. Secondly, we assume that
by default the human starts all traces in states s0 with the
highest feature value across the domain, then leads the
system to states sn with the lowest feature value. In some
situations, this assumption might unnecessarily limit the
kinds of feature traces the human can provide. For ex-
ample, the person might want to start somewhere where
the feature is only “half” expressed relative to the feature
range of the domain. Because of this, we optionally allow
the human to provide relative values v0, vn 2 [0, 1]1 to
communicate that the traces start/end at values that are
fractions of the feature range of the domain.

4.2 Learning a feature function

To allow for arbitrarily complex non-linear features, we
approximate a feature by a neural network
fψðsÞ :Rd →R

þ. We incorporate the assumptions in the
previous section by training fψ as a discriminative function
with respect to the state ordering in feature traces ξ 2 Ξ, and
also encouraging the starts s0 and ends sn across all traces to

have the same high and low values, respectively. For ease of
exposition, we present our feature learning technique without
the relative values v0 and vn first, then later describe how to
modify the algorithm to include them.

4.2.1 Monotonicity along feature traces. First, due to the
monotonicity assumption along any feature trace
ξk ¼ ðsk0,sk1,…,sknÞ, when training fψ we want to encourage
feature values to decrease monotonically along every trace,
that is, fψðski Þ ≥fψðskj Þ,"j> i,k. For this purpose, we
convert the set of collected traces ξk 2 Ξ into a dataset of
ordered tuples ðski ,skj Þ 2 T ord , where every first element
appears earlier in the trace than the second element (hence, its

feature value should be higher). This results in

�
ðnþ 1Þ

2

�
tuples per trace, which we can use for training fψ.

We train the discriminative function fψ as a predictor
for whether a state s has a higher feature value than another
state s0, which we represent as a softmax-normalized
distribution

P
�
fψðsÞ>fψ

�
s0
��

¼ P
�
s_s0

�
¼ efψðsÞ

efψðsÞ þ efψðs0Þ
(3)

where we define the shorthand notation s _ s0 for fψ(s) >
fψ(s

0). We choose ψ to minimize a negative log-likelihood
loss Lord(ψ) operating on the ordered tuples dataset

LordðψÞ ¼ �
X

ðs,s0Þ2T ord

log
�
P
�
s_s0

��
(4)

¼ �
X

ðs,s0Þ2T ord

log
efψðsÞ

efψðsÞ þ efψðs0Þ
: (5)

Intuitively, this loss spaces out the feature values fψ such
that they decrease monotonically along every trace; how-
ever, this alone does not constrain the traces to have the
same start and end values, respectively.

4.2.2 Start/end feature value equivalence. To encourage all
traces to start and end in the same high and low feature values,
we need an additional loss term encoding fψðsi0Þ ¼ fψðs

j
0Þ

and fψðsinÞ ¼ fψðsjnÞ for all ξ i, ξ j2 Ξ. We thus convert the set
of collected traces Ξ into another dataset T equiv of equivalence

tuples ðsi0,s
j
0Þ,ðsin,sjnÞ"ξ i,ξ j 2Ξ,i ≠ j,i> j. This results in

2

N
2

!
tuples where the states of the tuple (s, s0) should have

the same feature value, that is, fψ(s) = fψ(s
0). We denote this

relationship as s ∼ s0 to simplify notation.
When training fψ, the predictor should not be able to

distinguish which state has a higher feature value, hence P
(fψ(s) > fψ(s

0)) = 0.5. As such, we introduce a second loss
function Lequiv(ψ) that minimizes the negative log-likelihood
of both s having a higher feature value than s0 and s0 having a
higher feature value than s:

Bobu et al. 501

LequivðψÞ ¼ �
X

ðs,s0Þ2T equiv

log
�
P
�
s_s0

��
þ log

�
P
�
s0_s

��
(6)

¼ �
X

ðs,s0Þ2T equiv

log
efψðsÞþfψðs0Þ

ðefψðsÞ þ efψðs0ÞÞ2
(7)

This loss ensures the state space around feature trace
starts and ends have similar feature values, respectively.2

We now have a total dataset T ¼ T ord [T equiv of jT j ¼PN
i¼1

�
ðni þ 1Þ

2

�
þ 2

�
N
2

�
tuples, which is already sig-

nificantly large for a small set of feature traces. We can use it
to optimize a loss L(ψ) that combines the ordered and
equivalence losses

LðψÞ ¼ LordðψÞ þ λLequivðψÞ (8)

where λ is a hyperparameter trading off the two loss functions.
Given the loss function in equation (8), we can use any

automatic differentiation package to compute its gradients and
update ψ via gradient descent. Note that Lequiv is akin to a binary
cross-entropy losswith a target of 0.5, whereas Lord is similar to a
binary cross-entropy loss with a target of 1. This form of loss
function has been shown to be effective for preference learning
(Christiano et al., 2017; Ibarz et al., 2018). The key differences
here are that our loss is over feature functions not rewards, and
that preferences are state orderings provided via feature traces not
trajectory comparisons. Additionally, in practice we normalize
the feature functions to make their subsequent reward weights
reflect importance relative to one another. We present the full
feature learning algorithm using feature traces in Alg. 1.

Algorithm 1. Feature Learning via Feature Traces

Input: N number of queries, K iterations.
for i ← 1 to N do

Query feature trace ξ as in Section 4.1.
Ξ ←Ξ [ξ.

end
Convert Ξ to datasets T ord and T equiv as in Section 4.2.
Initialize fψ randomly.
for iteration k ← 1 to K do

Sample tuples batch bT ord 2T ord .
Sample tuples batch bT equiv 2T equiv.
Estimate L(ψ) using bT ord , bT equiv, and equation (8).
Update parameter ψ via gradient descent on L(ψ).

end
return normalized fψ

4.2.3 Incorporating relative values

So far, we have assumed that all feature traces have starts and
ends of the same high and low feature value, respectively. The
optional relative values v0, vn can relax this assumption to
enable the human to provide richer traces and teach more
complex feature functions, for example, where no monotonic
path from the highest to lowest feature value exists. By default,

v0 = 1 communicating that the trace starts at the highest feature
value of the domain, and vn = 0 signifying that the trace ends at
the lowest feature value. By allowing v0 and vn to be
something different from their defaults, the person can pro-
vide traces that start at higher feature values or end at lower
ones. We describe how to include these relative values in the
feature training procedure in Online Appendix A.1.

5. Algorithmic Approach: Reward Learning

Now that we have a method for learning relevant features,
we discuss how the robot can include this capability in
reward learning frameworks. For exposition, we chose two
reward learning frameworks—learning from demonstra-
tions (offline) and from corrections (online)—but we stress
that features learned with our method are applicable to any
other reward learning method that admits features (e.g.,
comparisons, scalar feedback, state of the world, etc.).

5.1 Offline FERL

We first consider the scenariowhere the human is attempting to
teach the robot a reward function from scratch; that is, the robot
starts off with an empty feature set f

!
. For instance, imagine a

system designer trying to engineer the robot’s reward before
deployment, or an end user resetting it and custom designing
the reward for their home. We can think of this as an offline
reward learning setting, where the person provides inputs to
the robot before it starts executing the task. Here, we focus on
learning from demonstrations, although our framework can be
adapted to any other offline reward learning strategy.

In standard learning from demonstrations, deep IRL uses a
set of demonstrations to train a reward function directly from
the raw state, in an end-to-end fashion. Under our divide-and-
conquer framework, we redistribute the human input the
robot asks for: first, ask for feature traces ξ focusing explicitly
on learning F features one by one via Alg. 1, and only then
collect a few demonstrations τ 2D∗ to learn the reward on top
of them. Alg. 2 summarizes the full procedure.

Algorithm 2. Offline FERL

Input: Demonstration set D*, F number of features,
K iterations, α learning rate.

Initialize empty feature set f
!¼ ½�.

for f ← 1 to F do
Learn feature ff using Alg. 1.
f
!
←ðf!,ff Þ.

end
Initialize θ randomly.
for iteration k ← 1 to K do

Generate samples Dθ using current reward Rθ.
Estimate gradient =L using

D*, Dθ in equation (15).
Update parameter θ using gradient =L in equation (16).

end
return optimized reward parameters θ

502 The International Journal of Robotics Research 41(5)

https://journals.sagepub.com/doi/suppl/10.1177/02783649221078031

5.1.1 Creating the feature set. Since the robot starts off with
an empty feature set f

!
, the person has to teach it every

relevant feature one at a time. To do so, they follow the
procedure in Alg. 1, that is they collect a set of feature traces
ξ 2 Ξ for the current feature, then use them to train fψ. The
person can add this new feature to the robot’s existing set

f
!
←
�
f
!
,fψ

�
(9)

and repeat the procedure for as many features F as they
want.

After being equipped with a new set of features taught by
the human, the robot can undergo standard learning from
demonstration procedures to recover the person’s preferences.
We now review Maximum Entropy IRL (Ziebart et al., 2008)
for completion of the offline reward learning exposition.

5.1.2 Offline reward learning. To teach the robot the de-
sired reward function Rθ, the person collects a set of
demonstrations τ 2D∗ for how to perform the task by di-
rectly controlling the state s through their input aH. During a
demonstration, the robot is put in gravity compensation
mode or teleoperated, to allow the person full control over
the desired trajectory. The robot interprets the set of
demonstrations D∗ as evidence about the human’s preferred
θ parameter, and uses them to estimate it and, thus, to learn
the reward function.

In order to reason about the human’s preferences, the
robot needs to be equipped with a model P(τjθ) for how
those preferences affect their choice of demonstrations.
For example, if the human were assumed to act optimally,
the model would place all the probability on the set of
trajectories that perfectly optimize the reward Rθ. How-
ever, since humans are not perfect, we relax this as-
sumption and model them as being noisily-optimal,
choosing trajectories that are approximately aligned with
their preferences. We follow the Boltzmann noisily-
rational decision model

Pðτjθ,βÞ ¼ eβRθðτÞZ
τ

eβRθ
�
τ
�
dτ

(10)

where the human picks trajectories proportional to their
exponentiated reward (Baker et al., 2007; Von Neumann
and Morgenstern, 1945). Here, β 2 [0, ∞) controls how
much the robot expects to observe human input consistent
with its reward model. For now, we use the Maximum
Entropy IRL (Ziebart et al., 2008) version of this obser-
vation model where β is fixed to 1, so for notation simplicity
we refer to this model as P(τjθ). Later in Section 5.2, we will
allow β to vary and make use of it in the online version of
our framework.

In maximum entropy IRL, to recover the θ parameter we
maximize the log-likelihood LðθÞ of the observed data

under the above model (Jaynes, 1957). To see how, let’s start
by writing down the log-likelihood formula

LðθÞ ¼ log∏τ2D∗PðτjθÞ ¼
X
τ2D∗

log
eRθðτÞZ

τ

eRθ
�
τ
�
dτ

¼
X
τ2D∗

RθðτÞ � jD∗jlog
Z
τ
eRθ
�
τ
�
dτ:

(11)

Computing the integral over trajectories is intractable in
real-world problems, so sample-based approaches to
maximum entropy IRL estimate it with samples τ 2D0

drawn from a background distribution q(τ)

LðθÞ ≈
X
τ2D∗

RθðτÞ � jD∗jlog 1��D0��X
τ2D0

eRθ
�
τ
�

q
�
τ
� : (12)

The distribution q(τ) is chosen oftentimes to be uni-
form; instead, we follow Finn et al. (2016) and generate
samples in those regions of the trajectory space that are
good according to the current estimate of the reward
function, that is, qðτÞ}eRθðτÞ. We denote τ 2Dθ such a set
sampled under θ.

We may now find θ by maximizing the log-likelihood
LðθÞ using gradient-based optimization on the above ob-
jective. The gradient then takes the following form

=L ¼ 1

jD∗j
X
τ2D∗

=RθðτÞ �
1��Dθ
��X
τ2Dθ

=Rθ

�
τ
�
: (13)

At this point, a standard deep IRL baseline could use any
automatic differentiation package to compute the gradient
and update the reward parameters directly from the raw
trajectory state. Instead, consistent with prior work on re-
ward learning with feature sets, we represent the reward as a
linear combination of the learned features f

!

RθðτÞ ¼ θT Φ
!ðτÞ ¼

X
ðs,aH ,aRÞ2τ

θT f
!ðsÞ: (14)

Note that the linear reward assumption is not necessary
for our algorithm to work. While in theory the reward
could be modeled as non-linear, our divide-and-conquer
approach is motivated by keeping the reward parameter
space small while still effectively capturing the person’s
preferences.

For the linear case, the gradient becomes the difference
between the observed demonstration feature values and the
expected feature values dictated by the sampled
trajectories

=L ¼ 1

jD∗j
X
τ2D∗

Φ
!ðτÞ � 1��Dθ

��X
τ2Dθ

Φ
!�

τ
�
: (15)

Bobu et al. 503

Lastly, we compute an estimate bθ by iteratively com-
puting the gradient =L and updating the parameters until
convergence

bθ0 ¼ bθ � α

0@ 1

jD∗j
X
τ2D∗

Φ
!ðτÞ � 1��Dθ

��X
τ2Dθ

Φ
!�

τ
�1A (16)

where α is the learning rate chosen appropriately. The
final reward learning procedure, thus, consists of K it-
erations of generating samples Dθ under the current re-
ward, using them to estimate the gradient in equation
(15), and updating the parameter θ via gradient descent
with equation (16).

5.2 Online FERL

In Section 5.1, we saw that our method allows the person
to specify a reward by sequentially teaching features and
adding them to the robot’s feature set before using
demonstrations to combine them. However, in many
situations the system designer or even the user teaching
the features might not consider all aspects relevant for the
task a priori. As such, we now consider an online reward
learning version of our previous scenario, where the
person provides inputs to the robot during the task ex-
ecution and its feature space may or may not be able to
correctly interpret them.

We assume the robot has access to an initial feature
set f

!
, and is tracking a trajectory τ optimizing its current

estimate of the reward function Rθ in equation (14). If
the robot is not executing the task according to the
person’s preferences, the human can intervene with
input aH. For instance, aH might be an external torque
that the person applies to change the robot’s current
configuration. Or, they might stop the robot and kin-
esthetically demonstrate the task, resulting in a trajec-
tory. Building on prior work, we assume the robot can
evaluate whether its existing feature space can explain
the human input (Section 5.2.2). If it can, the robot
directly updates its reward function parameters θ, also in
line with prior work (Bajcsy et al., 2017; Ratliff et al.,
2006) (Section 5.2.1). If it cannot, the human can teach
the robot a new feature3 fψ just like in Section 5.1 and
augment its feature set f

!
←ðf!,fψÞ. The robot can then

go back to the original human input aH that previously
could not be explained by the old features and use it to
update its estimate of the reward parameters θ. Algo-
rithm 3 summarizes the full procedure.

Algorithm 3. Online FERL

Input: Features f
!¼ ½f1,…,ff �, initial parameters θ,

confidence threshold ϵ.
Plan initial trajectory τ by optimizing Rθ.
while executing τ do

if aH then
Estimate confidence bβ from aH using equation (19).
if bβ < ϵ then

Learn feature fnew using Alg. 1.
f
!
←ðf!,fnewÞ,θ←ðθ,0:0Þ.

end
Get induced trajectory τH from equation (17).
Update parameter θ using τH in equation (18).
Replan trajectory τ by optimizing new Rθ.

end
end

5.2.1 Online reward update. Whether it needs to learn a new
feature fψ or not, the robot has to then use the human input aH
to update its estimate of the reward parameters θ. Here, any prior
work on online reward learning from user input is applicable,
but we highlight one example to complete the exposition.

For instance, take the setting where the human’s input aH
was an external torque, applied as the robot was tracking a
trajectory τ that was optimal under its current reward Rθ.
Prior work Bajcsy et al. (2017) has modeled this as inducing
a deformed trajectory τH, by propagating the change in
configuration to the rest of the trajectory

τH ¼ τ þ μA�1~aH (17)

where μ > 0 scales the magnitude of the deformation, A
defines a norm on the Hilbert space of trajectories4 and
dictates the deformation shape (Dragan et al., 2015), and ~aH
is aH at the interaction time and 0 otherwise.

If we think of τH as the human observation and of τ as the
expected behavior according to the current reward function
(Bajcsy et al., 2017), we arrive at a natural alternation of the
update rule in equation (16)

bθ0 ¼ bθ � α
�
Φ
!ðτHÞ � Φ

!ðτÞ
�
: (18)

Intuitively, the robot updates its estimate bθ in the direction of
the feature change induced by the human’s correction aH
from τ to τH.

If instead, the human intervenedwith a full demonstration,
work on online learning from demonstrations (Section 3.2 in
Ratliff et al. (2006)) has derived the same update with τH now
being the human demonstration. In our implementation, we

504 The International Journal of Robotics Research 41(5)

use corrections and follow Bajcsy et al. (2018), which shows
that people more easily correct one feature at a time, and only
update the θ index corresponding to the feature that changes
the most (after feature learning this is the newly learned
feature). After the update, the robot replans its trajectory
using the new reward.

5.2.2 Confidence estimation. The robot can learn a new
feature from the person because we assumed it has the
capacity to detect that a feature is missing in the first place.
We alluded earlier in Section 5.1 how this ability might be
enabled by manipulating the β parameter in the observation
model in equation (10). We now expand on this remark.

In the presented Boltzmann model, β controls how much
the robot expects to observe human input consistent with its
reward structure, and, thus, its feature space. A high β
suggests that the input is consistent with the robot’s feature
space, whereas a low β may signal that no reward function
captured by the feature space can explain the input. As such,
inspired by work in Fridovich-Keil et al. (2019), Fisac et al.
(2018), and Bobu et al. (2020), instead of keeping β fixed
like in the maximum entropy IRL observation model, we
reinterpret it as a confidence in the robot’s features’ ability to
explain human data.

When the human input aH is a correction, following Bobu
et al. (2020), the robot estimates bβ by considering how ef-
ficient the human input aH is in achieving the induced tra-
jectory features Φ

!ðτHÞ. Accordingly, bβ is inversely
proportional to the difference between the actual human input
and the input that would have produced Φ

!ðτH Þ optimally

bβ} 1

kaHk2 � ka∗Hk
2 (19)

where we obtain a∗H by solving the optimization problem
presented in Bobu et al. (2020) equation (21).

Intuitively, if the person’s input is close to the optimal a∗H ,
then it achieves the induced features Φ

!ðτH Þ efficiently,
resulting in high confidence bβ. If, however, there is a far
more efficient alternative input—the difference between
aH and a∗H is large—bβ will be small: the person probably
intended to give input about a feature the robot does not
know about.

Alternatively, if the human input aH is a demonstration,
like in the classical IRL presented in Section 5.1, also
following Bobu et al. (2020), we may estimate bβ via a
Bayesian belief update: b0(θ, β) } P (τjθ, β)b (θ, β). Once
again, in our implementation we used corrections, but the
work in Bobu et al. (2020) shows confidence estimation
can easily be adapted to learning from demonstrations if
desired.

To detect a missing feature, the robot simply needs a
confidence threshold ϵ. If bβ is above the threshold, the robot
is confident in its feature space, so it updates the reward as
usual; if bβ < ϵ, its features are insufficient and the robot asks
the person to be taught a new one.

6. Experiments: Learning Features

Before testing FERL in the two reward learning settings of
interest, we first analyze our method for learning features in
experiments with a robotic manipulator. In Section 6.1, we
inspect how well FERL can learn six different features of
varying complexity by using real robot data collected from an
expert—a person familiar with how the algorithm works. We
then conduct an online user study in simulation in Section 6.2
to test whether non-experts—people not familiar with FERL
but taught to use it—can teach the robot good features.

6.1 Expert users

We have argued that feature traces are useful in teaching
the robot features explicitly. In our first set of experi-
ments, we look at how good the learned features are, and
how their quality varies with the amount of feature traces
provided.

6.1.1 Experimental design. We conduct our experiments on
a 7-DoF JACO robotic arm. We investigate six features in
the context of personal robotics:

1. table: distance of the End-Effector (EE) to the table
(T), as a z-coordinate difference: EEz � T z (super-
script denotes pose coordinate selection);

2. coffee: coffee cup upright orientation, defined by
how far the EE is from pointing up: 1 � EER � [0, 0,
1] (superscript denotes pose rotation matrix);

3. laptop: 0.3 m xy-plane distance of the EE to a laptop
(L), to avoid passing over the laptop: max{0.3 �
kEExy � Lxyk2, 0};

4. test laptop location: same as laptop, but the test
position differs from the training ones;

5. proxemics: non-symmetric 0.3m xy-plane distance
between the EE and the human (H), to keep the EE
away from them, three times as much when moving
in front of them than on their side:

max

(
0:3�

ffi�
EEy�Hy

3

�2

þ ðEEx � HxÞ2,0

s)
;

6. between objects: 0.2m xy-plane distance of the EE to two
objects, O1 and O2—the feature penalizes being above
either object, and, to a lesser extent, passing in between
the objects as defined by a distance to the imaginary line
O1O2: maxf0:2�minf0:8∗

O1O
xy
2 � EExy

2
,

Oxy

1 � EExy

2
,

Oxy

2 � EExy

2
g,0g.

Most features can be taught with the default relative
values vn = 0 and v0 = 1, but between objects requires
some traces with explicit values v0, vn. We approximate
all features fψ by neural networks (2 layers, 64 units
each), and train them on a set of traces Ξ using stochastic
gradient descent (see Online Appendix C.1 for training
details).

Bobu et al. 505

https://journals.sagepub.com/doi/suppl/10.1177/02783649221078031

For each feature, we collected a set F of 20 feature
traces (40 for the complex test laptop location and between
objects) from which we sample subsets Ξ2F for training.
We decide for each feature what an informative and in-
tuitive set of traces would be, that is, how to choose the
starting states to cover enough of the space (details in
Online Appendix B.1). As described in Section 4.2, the
human teacher starts at a state where the feature is highly
expressed, for example, for laptop that is the EE posi-
tioned above the laptop. They then move the EE away until
the distance is equal to the desired radius. They do this for
a few different directions and heights to give a diverse
dataset.

Our raw state space consists of the 27D xyz positions of
all robot joints and objects in the scene, as well as the
rotation matrix of the EE. We assume known object posi-
tions but they could be obtained from a vision system. It was
surprisingly difficult to train on both positions and orien-
tations due to spurious correlations in the raw state space,
hence we show results for training only on positions or only
on orientations. This speaks to the need for methods that can
handle correlated input spaces, which we expand on in
Online Appendix B.3.

Manipulated variables. We are interested in seeing
trends in how the quality of the learned features changes
with more or less data available. Hence, we manipulate the
number of traces N the learner gets access to.

Dependent measures. After training a feature fψ, we
measure error compared to the ground truth feature fTrue that
the expert tries to teach, on a test set of states STest. To form
STest, we uniformly sample 10,000 states from the robot’s
reachable set. Importantly, many of these test points are far
from the training traces, probing the generalization of the
learned features fψ. We measure error via the Mean-Squared-
Error (MSE), MSE ¼ ð1=jSTestjÞ

P
STest

fψðsÞ � fTrueðsÞ

2.

To ground the MSE values, we normalize them with the mean
MSE of a randomly initialized untrained feature function,
MSEnorm ¼ MSE=MSErandom, hence a value of 1.0 is random
performance. For each N, we run 10 experiments sampling
different feature trace sets Ξ from F , and calculate MSEnorm.

Hypotheses

H1: With enough data, FERL learns good features.
H2: FERL learns increasingly better features with more
data.
H3: FERL becomes less input-sensitive with more data.

6.1.2 Qualitative results. We first inspect the results
qualitatively, for N = 10. In Figure 2, we show the learned
table and laptop features fψ by visualizing the position of
the EE for all 10,000 points in our test set. The color of the
points encodes the learned feature values fψ(s) from low
(blue) to high (yellow): table is highest when the EE is
farthest, while laptop peaks when the EE is above the
laptop. In Figure 3, we illustrate the Ground Truth (GT)
feature values fTrue and the trained features fψ by pro-
jecting the test points on 2D sub-spaces and plotting the
average feature value per 2D grid point. For Euclidean
features, we used the EE’s xy-plane or yz-plane (table), and
for coffee, we project the x-axis basis vector of the EE after
forward kinematic rotations onto the xz-plane (arrow up
represents the cup upright). White pixels are an artifact of
sampling.

We observe that fψ resembles fTrue very well for most
features. Our most complex feature, between objects, does
not recreate the GT as well, although it does learn the
general shape. However, we note in Online Appendix D.1
that in smaller raw input space it is able to learn the fine-
grained GT structure. This implies that spurious correlation
in input space is a problem, hence for complex features
more data or active learning methods to collect informative
traces are required.

6.1.3 Quantitative analysis. Figure 4 displays the means
and standard errors across 10 seeds for each feature with
increasing amount of data N. To test H1, we look at the
errors with the maximum amount of data. Indeed, FERL
achieves small errors, put in context by the comparison
with the error a random feature incurs (gray line). This is
confirmed by an ANOVA with random versus FERL as a
factor and the feature ID as a covariate, finding a signif-
icant main effect (F(1, 113) = 372.012 3, p < 0.0001). In
line with H2, most features have decreasing error with

Figure 2. Visualization of the experimental setup, learned feature values fψ(s), and training feature traces ξ for table (up) and laptop
(down). We display the feature values fψ(s) for states s sampled from the reachable set of the 7-DoF arm, as well as their projections
onto the yz and xy planes.

506 The International Journal of Robotics Research 41(5)

https://journals.sagepub.com/doi/suppl/10.1177/02783649221078031
https://journals.sagepub.com/doi/suppl/10.1177/02783649221078031
https://journals.sagepub.com/doi/suppl/10.1177/02783649221078031

increasing data. Indeed, an ANOVAwith N as a factor and
feature ID as a covariate found a significant main effect
(F(8, 526) = 21.140 7, p < 0.0001). Lastly, supporting H3,
we see that the standard error on the mean decreases when
FERL gets more data. To test this, we ran an ANOVAwith
the standard error as the dependent measure and N as a
factor, finding a significant main effect (F(8, 45) = 3.098,
p = 0.0072).

6.1.4 Summary. The qualitative and quantitative results
support our hypotheses and suggest that our method
requires few traces to reliably learn features fψ that
generalize well to states not seen during training. We
also find that the more complex a feature, the more traces
are needed for good performance: while table and laptop
perform well with just N = 4, some other features, like
between objects, require more traces. Active learning
approaches that disentangle the learned function by
querying traces at parts of the state space that are
confusing could further reduce the amount of data
required.

6.2 User study

In the previous section, we have demonstrated that experts
can teach the robot good feature functions. We now design a
user study to test how well non-expert users can teach
features with FERL and how easily they can use the FERL
protocol.

6.2.1 Experimental design. Due to COVID, we replicated
our setup from Figure 1 (Left) in a pybullet simulator
(Coumans and Bai, 2016–2019) in which users can move a
7 DoF-JACO robotic arm using their cursor. Through the
interface in Figure 5, the users can drag the robot to provide
feature traces, and use the buttons for recording, saving, and
discarding them.

The user study is split into two phases: familiarization
and teaching. In the first phase, we introduce the user to the
task context, the simulation interface, and how to provide
feature traces through an instruction video and a manual.
Next, we describe and 3D visualize the familiarization task
feature human (0.3 m xy-plane distance of the EE to the
human position), after which we ask them to provide 10
feature traces to teach it. Lastly, we give the users a chance
to see what they did well and learn from their mistakes by
showing them a 3D visualization of their traces and the
learned feature. See Online Appendix B.4 for more details
on the user training.

In the second phase, we ask users to teach the robot three
features from Section 6.1: table, laptop, and proxemics. This
time, we don’t show the learned features until after all three
tasks are complete.

Manipulated variables. We manipulate the input type
with three levels: Random, Expert, andUser. For Random,
we randomly initialize 12 feature functions per task; for
Expert, the authors collected 20 traces per task in the
simulator, then randomly subsampled 12 sets of 10 that
lead to features of similar MSEs to the ones in the physical
setup before; for User, each person provided 10 traces per
task.

Dependent measures. Our objective metric is the
learned feature’s MSE compared to the GT feature on STest,
similar to Section 6.1. Additionally, to assess the users’
interaction experience we administered the subjective 7-
point Likert scale survey from Figure 6, with some items
inspired by NASA-TLX (Hart and Staveland, 1988). After
they provide the feature traces for all three tasks, we ask the
top eight questions in Figure 6. The participants then see the
3D visualizations of their feature traces and learned features,
and we survey all 11 questions as in Figure 6 to see if their
assessment changed.

Participants. We recruited 12 users (11 males, aged 18–
30) from the campus community to interact with our
simulated JACO robot and provide feature traces for the
three tasks. All users had technical background, so we
caution that our results will speak to FERL’s usability with
this population rather than the general population.

Hypotheses

H4: FERL learns good features from non-expert user data.
H5: Users find it easy to think of traces to give the robot,
believe they understand how these traces influence the

Figure 3. The plots display the ground truth fTrue (top rows) and
learned feature values fψ (bottom rows) over STest, averaged
and projected onto a representative 2D subspace: the xy-plane, the
yz-plane (table), and the xz orientation plane for coffee (the arrow
represents the cup upright).

Bobu et al. 507

https://journals.sagepub.com/doi/suppl/10.1177/02783649221078031

learned feature, believe they were successful teachers, and
find our teaching protocol intuitive (little mental/physical
effort, time, or stress).

6.2.2 Analysis
Objective. Figure 7 summarizes the results by showing

how the MSE varies with each of our input types, for each
task feature. Right off the bat, we notice that in line with
H4, the MSEs for the user features are much closer to the
expert level than to random. We ran an ANOVA with
input type as a factor and task as a covariate, finding a
significant main effect (F(2, 103) = 132.7505, p <
0.0001). We then ran a Tukey HSD post-hoc, which
showed that the MSE for Random input was significantly
higher than both Expert (p < 0.0001) and User (p <
0.0001), and found no significant difference between
Expert and User (p = 0.0964). While this does not mean
that user features are as good as expert features (we
expect some degradation in performance when going to
non-experts), it shows that they are substantially closer to
them than to random; that is, the user features maintain a
lot of signal despite this degradation.

Subjective. In Figure 6, we see the Likert survey scores
before and after the users saw the teaching results. For
every question, we report 2-sided t-tests against the
neutral score 4. These results support H5, although the
evidence for finding the teaching protocol intuitive is
weaker, and participants might have a bias to be positive
given they are in a study. In fact, several participants
mentioned in their additional remarks that they had a good
idea of what traces to give, and the only frustrating part
was the GUI interface, which was necessary because in-
person studies are not possible during the COVID pan-
demic (“I had a pretty good mental model for what I
wanted to show, but found it frustrating doing that with a

mouse,” “I know what it wants, but the interface makes it
difficult to give those exact traces”); performing the ex-
periment as it was originally intended with the real robot
arm would have potentially alleviated this issue (“With
manual control of the arm it would have been a lot
easier.”).

Looking before and after the visualization, we find a
trend: seeing the result seems to reinforce people’s belief
that they were effective teachers (Q3, Q4), also noticed in
their comments (“Surprising how well it learned!”,
“Surprised that with limited coverage it generalized pretty
well.”). Also, in support of H4, we see significant evi-
dence that users thought the robot learned the correct
feature (Q9-Q11).

Lastly, we wanted to know if there was a correlation
between subjective scores and objective performance. We
isolated the “good teachers”—the participants who scored
better than average on all three feature tasks in the objective
metric, and compared their subjective scores to the rest of
the teachers. By running a factorial likelihood-ratio test for
each question, we found a significant main effect for good
teachers: they are more certain that the robot has learned a
correct feature even before seeing the results (Q3, p =

0.001), are more inclined to think they were successful (Q4,
p = 0.0203), and find it significantly easier to teach features
(Q7, p = 0.0202).

6.2.3 Summary. Both the objective and subjective results
provide evidence that non-expert users can teach the
robot reasonable features using our FERL protocol. In
addition, participants found our teaching protocol intu-
itive, suggesting that feature traces can be useful for
teaching features outside of the system designer’s setting.
In the following sections, we explore whether both expert
and non-expert features can be used to improve reward
learning generalization.

Figure 5. The pybullet simulator interface used in the user study,
replicating our lab setup with the JACO robot.

Figure 4. For each feature, we show the MSEnorm mean and
standard error across 10 random seeds with an increasing
number of traces (orange) compared to random (gray).

508 The International Journal of Robotics Research 41(5)

7. Experiments: Online FERL

Now that we have tested our method for learning features
with both experts and non-experts, we analyze how the
learned features affect reward learning. In this section,
we start with the easier setting where the robot already
has a feature set that it is using for online reward learning,
but the human might provide input about a missing
feature.

7.1 Expert users

When the robot receives human input that cannot be explained
by its current set of features, we hypothesize that adding
FERL features to it can induce structure in the reward learning

procedure that helps better recover the person’s preferences.
We first test this hypothesis with expert user data.

7.1.1 Experimental design. We run experiments on the same
JACO robot arm in three settings in which two features are
known (fcoffee, fknown) and one is unknown. In all tasks, the
true reward is rtrue ¼ ð0; 10; 10Þðfcoffee,fknown,funknownÞT .
We includefcoffee with zero weight to evaluate if themethods
can learn to ignore irrelevant features. In task 1, flaptop is
unknown and the known feature is ftable; in task 2, ftable is
unknown and flaptop is known; and in task 3, fproxemics is
unknown and ftable is known. We name the tasks Laptop
Missing, TableMissing, and ProxemicsMissing, respectively.

Manipulated variables. We manipulate the learning
method with 2 levels: FERL and an adapted Maximum
Entropy Inverse Reinforcement Learning (ME-IRL) baseline5

(Finn et al., 2016; Wulfmeier et al., 2016) learning a deep
reward function from demonstrations. We model the ME-IRL
reward function rω as a neural networkwith 2 layers, 128 units
each. For a fair comparison, we gave rω access to the known
features: once the 27D Euclidean input is mapped to a neuron,
a last layer combines it with the known feature vector.

Also for a fair comparison, we took great care to collect a
set of demonstrations for ME-IRL designed to be as infor-
mative as possible: we chose diverse start and goal configu-
rations for the demonstrations, and focused some of them on
the unknown feature and some on learning a combination
between features (see Online Appendix B.2).Moreover, FERL
and ME-IRL rely on different input types: FERL on feature
traces ξ and pushes aH and ME-IRL on a set of near-optimal
demonstrations D∗. To level the amount of data each method
has access to, we collected the traces Ξ and demonstrationsD∗

such thatME-IRL hasmore data points: the average number of
states per demonstration/trace were 61 and 31, respectively.

Following equation (13), the gradient of theME-IRL objective
with respect to the reward parameters ω can be estimated by:
=ωL ≈ ð1=jD∗jÞ

P
τ2D∗=ωRωðτÞ� ð1=jDωjÞ

P
τ2Dω=ωRωðτÞ

(Wulfmeier et al., 2016; Finn et al., 2016). Here, Rω(τ) =P
s2τ rω(s) is the parametrized reward, D∗ the expert

demonstrations, and Dω are trajectory samples from the rω
induced near-optimal policy. We use TrajOpt (Schulman
et al., 2013) to obtain the samples Dω (see Online
Appendix C.4 for details). For practical considerations
and implementation details of the online version of FERL
we used, see Online Appendix C.2.

Dependent measures. We compare the two reward
learning methods across three metrics commonly used in
the IRL literature (Choi and Kim, 2011: 1) Reward Ac-
curacy: how close to GT the learned reward is, 2) Behavior
Accuracy: how well do the behaviors induced by the
learned rewards compare to the GT optimal behavior,
measured by evaluating the induced trajectories on GT
reward, and 3) Test Probability: how likely trajectories
generated by the GT reward are under the learned reward
models.

Figure 7. MSE to GT for the three features learned from expert
(orange) and user (yellow) traces provided in simulation, and
randomly (gray) initialized feature for comparison.

Figure 6. Questions, answer distributions, and p-values (2-sided t-
test against the middle score 4) from the user study. The p-values
in orange are significant after adjusted for multiple comparisons
using the Bonferroni correction.

Bobu et al. 509

https://journals.sagepub.com/doi/suppl/10.1177/02783649221078031
https://journals.sagepub.com/doi/suppl/10.1177/02783649221078031
https://journals.sagepub.com/doi/suppl/10.1177/02783649221078031
https://journals.sagepub.com/doi/suppl/10.1177/02783649221078031

For Reward Accuracy, note that any affine transfor-
mation of a reward function would result in the same
induced behaviors, so simply measuring the MSE be-
tween the learner’s reward and the GT reward may not be
informative. As such, we make reward functions given
by different methods comparable by computing each
learner’s reward values on STest and normalizing the
resulting set of rewards to be in [0, 1]. This allows us to
compute the MSE on STest between each method and the
GT. Similarly to Section 6.1, we report this metric by
varying the number of traces/demonstrations each
learner gets access to. For Behavior Accuracy and Test
Probability, we train FERL and ME-IRL with a set of 10
traces/demonstrations. For Behavior Accuracy, we use
TrajOpt (Schulman et al., 2013) to produce optimal
trajectories for 100 randomly selected start-goal pairs
under the learned rewards. We evaluate the trajectories
with the GT reward rtrue and divide by the reward of the
GT induced trajectory for easy relative comparison. For
Test Probability, we generate 100 optimal trajectories
using the GT reward, then evaluate their likelihood under
the Boltzmann model in equation (10) with each learned
reward. To approximate the intractable integral in equation
(10), we sample6 sets of 100 trajectories for every start-
goal pair corresponding to the optimal trajectories. For a
fair comparison, we use the normalized rewards once
again, and fit the maximum likelihood coefficient bβ for
each model.

Hypotheses

H6: Online FERL learns rewards that better generalize to
the state space than ME-IRL.
H7: Online FERL performance is less input-sensitive than
ME-IRL’s.

7.1.2 Qualitative comparison. In Figure 8, we show the
learned FERL andME-IRL rewards as well as the GT for all
three tasks evaluated at the test points. As we can see, by
first learning the missing feature and then the reward on the
extended feature vector, FERL is able to learn a fine-grained
reward structure closely resembling the GT. Meanwhile,
ME-IRL learns some structure capturing where the laptop or
the human is, but not enough to result in a good trade-off
between the active features.

7.1.3 Quantitative analysis. To compare Reward Accuracy,
we show in Figure 9 the MSE mean and standard error
across 10 seeds, with increasing training data. We visualize
results from all three tasks, with FERL in orange and ME-
IRL in gray. FERL is closer to GT than ME-IRL no matter
the amount of data, supporting H6. To test this, we ran an
ANOVA with learning method as the factor, and with the
task and data amount as covariates, and found a significant
main effect (F(1, 595) = 335.5253, p < 0.0001).

Additionally, the consistently decreasing MSE in
Figure 9 for FERL suggests that our method gets better with

more data; in contrast, the same trend is inexistent with ME-
IRL. Supporting H7, the high standard error that ME-IRL
displays implies that it is highly sensitive to the demon-
strations provided and the learned reward likely overfits to
the expert demonstrations. We ran an ANOVAwith standard
error as the dependent measure, focusing on theN = 10 trials
which provide the maximum data to each method, with the
learning method as the factor and the task as a covariate. We
found that the learning method has a significant effect on the
standard error (F(1, 4) = 12.1027, p = 0.0254). With even
more data, this shortcoming of IRL might disappear;
however, this would pose an additional burden on the
human, which our method successfully alleviates.

We also looked at Behavior Accuracy for the two
methods. Figure 10 illustrates the reward ratios to GT for all
three tasks. The GT ratio is 1 by default, and the closer to 1
the ratios are, the better the performance because all rewards
are negative. The figure further supports H6, showing that
FERL rewards produce trajectories that are preferred under
the GT reward overME-IRL reward trajectories. AnANOVA
using the task as a covariate reveals a significant main effect
for the learning method (F(1, 596) = 14.9816, p = 0.0001).

Lastly, we compare how likely a test set of trajectories
given by optimizing the GT reward is under the two models.
A more accurate reward model should give higher proba-
bilities to the demonstrated trajectories under the Boltzmann
noisily-rational assumption in equation (10). Figure 11 il-
lustrates that FERL does indeed assign higher likelihood to
the test trajectories than ME-IRL, which is consistent with
H6.

7.1.4 Summary. The rewards learned with FERL qualita-
tively capture more structure than ME-IRL ones, but they
also quantitatively get closer to the GT. Using FERL
features—at least when the robot is missing one feature—
seems to induce useful structure in the reward learning
process that guides the robot to better capture the person’s
preferences. These results hold when the person teaching
the missing feature is an expert user; we next look at the case
where a novice interacts with the robot instead.

7.2 Non-expert users

The objective results in Section 6.2 show that while users’
performance degrades from expert performance, they are
still able to teach features with a lot of signal. We now want
to test how important the user-expert feature quality gap is
when it comes to using these features for online reward
learning.

7.2.1 Experimental design. For this experiment, we had a
similar setup to the one in Section 7.1, only that we per-
formed reward learning with FERL using the user-taught
simulation features from the user study. We wanted to see if
the divide-and-conquer approach employed by FERL re-
sults in better rewards than ME-IRL even when using noisy
simulation data.

510 The International Journal of Robotics Research 41(5)

Manipulated Variables. We manipulate the learning
method, FERL or ME-IRL, just like in Section 7.1. Because
corrections and demonstrations would be very difficult in
simulation, we use for ME-IRL the expert data from the
physical robot. For FERL, we use the user data from the
simulation, and the expert corrections that teach the robot
how to combine the learned feature with the known ones.
Note that this gives ME-IRL an advantage, since its data
is both generated by an expert, and on the physical robot.
Nonetheless, we hypothesize that the advantage of the
divide-and-conquer approach is stronger.

Dependent measures. We use the same objective metric
as Reward Accuracy in the expert comparison in Section
7.1: the learned reward MSE to the GT reward on STest.

Hypothesis

H8: Online FERL learns more generalizable rewards than
ME-IRL even when using features learned from data pro-
vided by non-experts in simulation.

7.2.2 Analysis. Figure 12 illustrates our findings for the
reward comparison. In the figure, we added FERL with
expert-taught simulation features for reference: we
randomly subsampled sets of 10 from 20 expert traces
collected by the authors, and trained 12 expert features
for each of our three task features. We see that, even
though ME-IRL was given the advantage of using
physical expert demonstrations, it still severely under-
performs when compared to FERL with both expert and
user features learned in simulation. This finding is
crucial because it underlines the power of our divide-
and-conquer approach in online reward learning: even
when given imperfect features, the learned reward is
superior to trying to learn everything implicitly from
demonstrations.

We verified the significance of this result with an
ANOVAwith the learning method as a factor and the task
as a covariate. We found a significant main effect for the
learning method (F(1, 62) = 41.2477, p < 0.0001), sup-
porting our H8.

7.2.3 Summary. Despite the degradation in feature
quality we see in user features when compared to expert
ones, we find that the structure they do maintain is
advantageous in online reward learning. This suggests
that the online instantiation of FERL can be used even
by non-experts to better teach the robot their
preferences.

Figure 8. Visual comparison of the ground truth, online FERL,
and ME-IRL rewards for Laptop Missing (top), Table Missing
(middle), and Proxemics Missing (bottom).

Figure 9. MSE of online FERL and ME-IRL to GT reward across
all three tasks. FERL learns rewards that better generalize to the
state space.

Figure 10. Induced trajectories’ reward ratio for the two methods
compared to GT. ME-IRL struggles to generalize across all
tasks.

Bobu et al. 511

8. Experiments: Offline FERL

In the online reward learning setting, the robot was already
equipped with a starting feature set, and we tested how
learning missing features affects the reward. We now look at
the scenario where the robot’s reward must be programmed
entirely from scratch, teaching each feature separately be-
fore combining them into a reward via demonstrations.

8.1 Expert users

We have argued that learned features can induce useful
structure that speeds up reward learning. We test how the
reward is affected when the entire structure is built up from
the expert features taught from real robot data in Section
6.1.

8.1.1 Experimental design. We run experiments on the
robot arm in three settings of increasing complexity: in the
first, the true reward depends on a single feature, and every
subsequent task adds another feature to the reward. In task 1,
the true reward depends on only ftable. In task 2, we add the
flaptop feature, and in task 3 the fproxemics feature. In both
tasks 2 and 3, the reward equally combines the two and
three features, respectively. Task 1 should be easy enough
for even an end-to-end IRL method to solve, especially
since it relies on the simplest feature that we have con-
sidered. Meanwhile, tasks 2 and 3 require learning rewards
that are more structurally complex. We name the three
tasks One Feature, Two Features, and Three Features,
respectively.

Manipulated variables. We manipulated the learning
method with 2 levels: FERL and ME-IRL. While in Section
7 ME-IRL had access to the known features, this time the
reward network is a function mapping directly from the 27D
Euclidean input space only. For practical considerations and
implementation details of the offline version of FERL we
used, see Online Appendix C.3.

For a fair comparison, we once again took great care in
how we collected the demonstrations ME-IRL learns from.
Just like before, we chose diverse start and goal configu-
rations, and focused some of the demonstrations on each
individual feature, and, when it applies, on each combi-
nation of features (see Online Appendix B.2). Importantly,
while ME-IRL uses a set of near-optimal demonstrations
D∗, FERL requires both demonstrations and feature traces ξ.
To level the amount of data each method has access to, we
distributed the demonstrations and traces FERL has access
to such that ME-IRL has more data points. The average
number of states per demonstration/trace were 64 and 31,
respectively, so if we keep the number of ME-IRL dem-
onstrations and FERL traces the same, FERL has a non-zero
budget of demonstrations to use for cases with more than
one demonstration (N > 1).

Dependent measures. We use the same objective metrics
as Reward Accuracy, Behavior Accuracy, and Test Proba-
bility in Section 7.1. For Reward Accuracy, we vary the
number N of traces/demonstrations each learner gets but
skipN = 1 because FERLwould have an unfair advantage in
the amount of data given. We giveME-IRL up to 10, 20, and
30 demonstrations for the three tasks, respectively. Mean-
while, we give FERL up to 10 traces for each feature, and 1,
2, and 3 demonstrations for each task, respectively. Overall,
FERL would use up to 10 traces and one demonstration, up
to 20 traces and 2 demonstrations, and up to 30 traces and 3
demonstrations, while ME-IRL would be given 10, 20, and
30 demonstrations for each task, respectively. For Behavior
Accuracy and Test Probability, we train FERLwith 10 traces
per feature and 1, 2, or 3 demonstrations, and ME-IRL with
10, 20, and 30 demonstrations, respectively. Just like in
Section 7.1, for Behavior Accuracy we produce optimal
trajectories for 100 randomly selected start-goal pairs under

Figure 11. Probability assigned by the two methods to a set of
optimal trajectories under the Boltzmann assumption. The
trajectories are more likely under FERL than ME-IRL, suggesting
FERL is the more accurate reward model.

Figure 12. MSE to GT reward for the three tasks, comparing ME-
IRL from expert physical demonstrations (gray) to online FERL
from expert (orange) and non-expert (yellow) features learned in
simulation and combined via corrections.

512 The International Journal of Robotics Research 41(5)

https://journals.sagepub.com/doi/suppl/10.1177/02783649221078031
https://journals.sagepub.com/doi/suppl/10.1177/02783649221078031

the learned rewards and evaluate them under the GT reward.
Meanwhile, for Test Probability, we generate 100 optimal
trajectories using the GT reward, then evaluate their like-
lihood under the learned models.

Hypothesis

H9: Offline FERL learns rewards that better generalize to
the state space than ME-IRL.

8.1.2 Qualitative comparison. In Figure 13, we show the
learned FERL and ME-IRL rewards as well as the GT for
all three tasks evaluated at the test points. The figure il-
lustrates that by first learning each feature separately and
then the reward that combines them, FERL is able to learn
a fine-grained reward structure closely resembling the GT.
For the easiest task, One Feature, ME-IRL does recover
the GT appearance, but this is unsurprising since the table
feature is very simple. For the other more complex two
tasks, just like in the online case, ME-IRL learns some
structure capturing where the laptop or the human is, but
not enough to result in a good trade-off between the
features.

8.1.3 Quantitative analysis. To compare Reward Accuracy,
we show in Figure 14 theMSEmean and standard error across
10 seeds, with increasing training data. We visualize results
from all three tasks side by side, with FERL in orange and
ME-IRL in gray. ForOne Feature, as expected, ME-IRL does
eventually learn a good reward with enough data. However,
for the other more complex tasks that combine multiple
features, ME-IRL underperforms when compared to our
method. Overall, across the tasks, FERL is closer to GT than
ME-IRL no matter the amount of data, supporting H9. To test
this, we ran an ANOVA with learning method as the factor,
and with the task and data amount as covariates, and found a
significant main effect (F(1, 535) = 148.8431, p < 0.0001).

For comparing Behavior Accuracy, Figure 15 illustrates
the reward ratios to GT for all three tasks. When the reward
consists of a single very simple feature, ME-IRL performs
just as well as our method. However, when the reward
structure more complexly combines multiple features, ME-
IRL does not produce as good trajectories under the GT
reward as FERL, supporting H8. We ran an ANOVA using
the learning method as a factor and the task as a covariate and
did not find a significant main effect, probably due to the
One Feature results. To verify this theory, we re-ran the
ANOVA using only the data from the more complex Two
Features and Three Features tasks, and did, in fact, find a
significant main effect (F(1, 397) = 5.7489, p = 0.0097).
Results with the Test Probability metric paint a similar
picture. Figure 16 shows that for the easy One Feature
case, both methods perform comparably, but when the
reward is more complex (Two Features and Three Fea-
tures), FERL outperforms ME-IRL and assigns higher
probability to the test trajectories.

8.1.4 Summary. The results in this section suggest that
while ME-IRL is capable of recovering very simple reward
structures, it does not perform as well as using FERL
features for complex rewards. This observation applies
when the features are taught by experts, so we now test what
happens if we instead use non-expert user features.

8.2 Non-expert users

In Section 7.2, we saw that user-taught FERL features have
enough structure to help the robot recover the human’s
preferences in online reward setting where the original
feature set is incomplete. However, there we only had one
missing feature. In this section, we test the more challenging
scenario, where we learn a reward from scratch using the
noisy user features learned in simulation.

8.2.1 Experimental design. For this experiment, we had
a similar setup as in Section 7.2—using the user-taught
simulation features for learning the reward—only this time
we tested the offline instantiation of FERL. Given that now
we combine multiple noisy features together into a reward,
we wanted to see how our divide-and-conquer approach
fares against the ME-IRL baseline.

Manipulated variables. We manipulate the learning
method, FERL or ME-IRL, just like in Section 8.1. Like in
Section 7.2, we use demonstrations collected from the
expert on the physical robot for ME-IRL. For FERL, we use
the user data from the simulation, and the expert demon-
strations that teach the robot how to combine the learned
feature into a reward. Note that this gives ME-IRL an

Figure 13. Visual comparison of the ground truth, offline FERL,
and ME-IRL rewards for One Feature (top), Two Features
(middle), and Three Features (bottom).

Bobu et al. 513

advantage, since all its data is both generated by an expert,
and on the physical robot.

Dependent measures. We use the same objective metric
as Reward Accuracy in the expert comparison in Section
8.1: the learned reward MSE to the GT reward on STest.

Hypotheses.
H10: Offline FERL learns more generalizable rewards than
ME-IRL even when using features learned from data pro-
vided by non-experts in simulation.

8.2.2 Analysis. Figure 17 illustrates our findings for the
reward comparison. We also added the offline FERL
reward using expert-taught simulation features for ref-
erence, where we randomly subsampled sets of 10 traces
and trained 12 expert features for each of the three fea-
tures. This time, we find that the user features are noisy
enough that, when combined into a reward, they do not
reliably provide an advantage over ME-IRL. This could
be attributed to the difficulty of teaching features in a
simulator, especially given that there is no easy way to
approximate distances and traces in 3D space with a 2D
interface are hard. We verified this result with an ANOVA
with the learning method as a factor and the task as a co-
variate, and, as expected, we found no significant main effect.

8.2.3 Summary. Previously, we have seen how structure can
indeed help reward learning generalizability and sample
efficiency; but we now see that the wrong—or very noisy—
structure obtained from traces from simulation may di-
minish the benefits that our divide-and-conquer approach
promises. However, we suggest taking this result with a
grain of salt, since ME-IRL had the advantage of all-expert,
all-physical data, whereas our method was limited to data
collected in simulation from novice users. While not pos-
sible during the pandemic, we are optimistic that with
physical demonstrations the benefits would be more
prominent.

9. Discussion

Learning reward functions is a popular way to help robots
generate behaviors that adapt to new situations or human
preferences. In this work, we propose that robots can learn
more generalizable rewards by using a divide-and-conquer
approach, focusing on learning features separately from
learning how to combine them. We introduced feature
traces as a novel type of human input that allows for in-
tuitive teaching of non-linear features from high-
dimensional state spaces. We then presented two instan-
tiations of our FERL algorithm: one that enables ex-
panding the robot’s feature set in online reward learning
situations, and one that lets the user sequentially teach
every feature and then combine them into a reward. In
extensive experiments with a real robot arm and a user
study in simulation, we showed that online FERL out-
performs deep reward learning from demonstrations (ME-
IRL) in data-efficiency and generalization. Offline FERL
similarly beats ME-IRL when the features used are of high
enough quality, but the results are less conclusive when
using very noisy features.

Implications for online reward learning

Because they have to perform updates in real time from very
little input, online reward learning methods represent the
reward as a linear function of a small set of hand-engineered
features. As discussed, exhaustively choosing such a set a
priori puts too much burden on system designers, and using

Figure 14. MSE of offline FERL andME-IRL to GT reward forOne Feature (left), Two Features (middle), and Three Features (right). In
most data regimes, FERL learns rewards that better generalize to the state space.

Figure 15. Induced trajectories’ reward ratio for the two methods
compared to GT. While ME-IRL generalizes for the single
feature task, it struggles with the more complex multiple feature
tasks.

514 The International Journal of Robotics Research 41(5)

an incomplete set of features can lead to learning the
wrong reward. Prior work enabled robots to at least detect
that its feature space is insufficient to explain the human’s
input (Bobu et al., 2018), but then the robot’s only option
was to either not update the reward or completely stop
task execution. Our online FERL approach provides an
alternative that allows people to teach features when the
robot detects it is missing something, and then update the
reward using the new feature set. Although in this paper
we presented experiments where the robot learns rewards
from corrections, our framework can conceivably be
adapted to any online reward learning method, provided
there is a way to detect the feature set is insufficient.
Recent work on confidence estimation from human
demonstrations (Bobu et al., 2020) and teleoperation
(Zurek et al., 2021) offers encouraging pathways to
adapting FERL to other online human–robot collabora-
tive settings.

Implications for learning complex rewards
from demonstrations

Reward learning from raw state space with expressive function
approximators is considered difficult because there exists a
large set of functions rθ (s) that could explain the human input.
For example, in the case of learning from demonstrations,
many functions rθ (s) induce policies that match the dem-
onstrations’ state expectation. The higher dimensional the state
s, the more human input is needed to disambiguate between
those functions sufficiently to find a reward rθ that accurately
captures human preferences. Without that, the learned reward
is unlikely to generalize to states not seen during training and
might simply replicate the demonstrations’ state expectations.
In this paper, we presented evidence that offline FERL may
provide an alternative to better disambiguate the reward and
improve generalization.

The reason our divide-and-conquer approach can help
relative to relying on demonstrations for everything is that
demonstrations aggregate a lot of information. First, by
learning features, we can isolate learning what matters from
learning how to trade off what matters into a single value
(the features vs. their combination)—in contrast, demon-
strations have to teach the robot about both at once. Second,
feature traces give information about states that are not on
optimal trajectories, be it states with high feature values that
are undesirable, or states with low feature values where
other, more important features have high values. Third,
feature traces are also structured by the monotonicity as-
sumption: they tell us relative feature values of the states
along a trace, whereas demonstrations only tell us about the
aggregate reward across a trajectory. Thus, by focusing on
learning features first before combining them into a reward,
the robot can incorporate all three benefits and ultimately
improve reward learning from demonstrations.

Limitations and future work

Our work is merely a step towards understanding how
explicitly focusing on learning features can impact reward
learning generalization and sample complexity. While
FERL enables robots to learn features and induce structure
in reward learning, there are several limitations that may
affect its usability.

Our user study provides evidence that non-expert users
can, in fact, use FERL to teach good features. However, due
to the current pandemic, we conducted the study in a
simulated environment instead of in person with the real
robot, and most of our users had technical background. It is
unclear how people without technical background would
perform, and especially how kinesthetically providing
feature traces (instead of clicking and dragging in a sim-
ulator) would affect their perception of the protocol’s us-
ability. Further, we only tested whether users could teach
features we tell them about, so we still need to test whether
users can teach features they implicitly know about (as

Figure 17. MSE to GT reward for the three tasks, comparing ME-
IRL from expert physical demonstrations (gray) to offline FERL
from expert (orange) and non-expert (yellow) features learned in
simulation and combined via corrections.

Figure 16. Probability assigned by the two methods to a set of
optimal trajectories under the Boltzmann assumption. For the
more complex multiple feature tasks, the trajectories are more
likely under FERL than ME-IRL.

Bobu et al. 515

would happen when intervening to correct the robot or
designing a reward from scratch).

Even if people know the feature they want to teach, it
might be so abstract (e.g., comfort) that they would not
know how to teach it. Moreover, with the current feature
learning protocol, they might find it cumbersome to teach
discontinuous features like constraints. We could ease the
human supervision burden by developing an active learning
approach where the robot autonomously picks starting
states most likely to result in informative feature traces. For
instance, the robot could fit an ensemble of functions from
traces online, and query for new traces from states where the
ensemble disagrees (Reddy et al., 2020a). But for such
complex features, it may be more effective to investigate
combining feature traces with other types of structured
human input.

The quality of the learned rewards depends directly on
the quality of the learned features. When the human
provides feature traces that lead to good features, many of
our experiments demonstrate that they induce structure in
the reward learning procedure that helps generalization
and sample complexity. However, if the robot learns
features that are too noisy or simply incorrect, that (wrong)
structure may impair performance. We saw an example of
this when we tried to utilize the user study features for
reward learning. In online FERL where a single feature
was missing, the structure captured by the (noisy) non-
expert features was still helpful in learning a better reward
than the baseline. However, when trying to combine
multiple noisy features in offline FERL, reward learning
did not see a benefit. Future work must investigate ways in
which the robot can determine whether to accept or reject
the newly learned feature. One idea is to use our current
framework’s confidence estimation capability in Section
5.2.2 to determine whether the learned feature set explains
the human’s reward input. Another idea is to visualize
either the feature function or examples of behaviors in-
duced by it, and let the person decide whether the learned
feature is acceptable.

Lastly, while we show that FERL works reliably in 27D,
more work is necessary to extend it to higher dimensional
state spaces, like images. In our discussion in Online
Appendix B.3, we show how spurious correlations in
large input spaces may affect the quality of the learned
features in low data regimes. To counteract that, we could
ask the person for more data, but after a certain point this
becomes too burdensome on the user. Alternatively, ap-
proaches that encode these spaces to lower dimensional
representations or techniques from causal learning, such as
Invariant Risk Minimization (Arjovsky et al., 2019), could
help tackle these challenges.

Acknowledgements

We also thank Rohin Shah for providing guidance and feedback on
our work.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with re-
spect to the research, authorship, and/or publication of this article.

Funding

'The author(s) disclosed receipt of the following financial
support for the research, authorship, and/or publication of this
article: This research is supported by the Air Force Office of
Scientific Research (AFOSR), the Office of Naval Research
(ONR-YIP), the DARPA Assured Autonomy Grant, the CONIX
Research Center, and the German Academic Exchange Service
(DAAD).

ORCID iD

Andreea Bobu  https://orcid.org/0000-0002-9507-7427

Notes

1. Since specifying decimal fractions is difficult, the person gives
percentages between 0 and 100 instead.

2. One could choose other losses to ensure equivalence of start and
end values such as a p-norm kfψ(s) � fψ(s0)kp. We ex-
perimented with p = 2, but it produced inferior results.

3. Because feature learning was triggered by an intervention, it is
fair to assume that the human knows what aspect of the task
they were trying to correct.

4. We used a norm A based on acceleration, consistent with Bajcsy
et al. (2017), but other norm choices are possible as well.

5. We chose ME-IRL as it is the state-of-the-art method for
learning rewards and does not rely on base feature engineering,
as explained in Section 2. We also tried a linear variant of ME-
IRL optimizing the reward parameters on top of random fea-
tures modeled as neural networks. However, we found the
performance of this alternate baseline to be consistently inferior
to that of the deep ME-IRL (see Online Appendix D.2), so we
only compare against the deep variant.

6. To obtain dynamically feasible trajectories, we sampled random
objectives given by linear combinations of various features, and
optimized them with TrajOpt. While this sampling strategy
cannot be justified theoretically, it works well in practice: the
resulting optimized trajectories are a heuristic for sampling
diverse and interesting trajectories in the environment.

References

Abbeel P and Ng AY (2004) Apprenticeship learning via inverse
reinforcement learning. In: Machine Learning (ICML), In-
ternational Conference on. Banff, Alberta, Canada: ACM.

Amodei D and Clark J (2016) Faulty reward functions in the wild.
https://blog.openai.com/faulty-reward-functions/.

Argall BD, Chernova S and Veloso M, et al. (2009) A survey of
robot learning from demonstration. Robotics and autonomous
systems 57(5): 469–483.

Arjovsky M, Bottou L and Gulrajani I, et al. (2019) Invariant risk
minimization. ArXiv abs/1907.02893.

516 The International Journal of Robotics Research 41(5)

https://journals.sagepub.com/doi/suppl/10.1177/02783649221078031
https://journals.sagepub.com/doi/suppl/10.1177/02783649221078031
https://orcid.org/0000-0002-9507-7427
https://orcid.org/0000-0002-9507-7427
https://journals.sagepub.com/doi/suppl/10.1177/02783649221078031
https://blog.openai.com/faulty-reward-functions/

Bajcsy A, Losey DP and O’Malley MK, et al. (2017) Learning
robot objectives from physical human interaction. In: Pro-
ceedings of the 1st Annual Conference on Robot Learning,
Proceedings of Machine Learning Research (eds S Levine, V
Vanhoucke and K Goldberg), pp. 217–226. PMLR. http://
proceedings.mlr.press/v78/bajcsy17a.html.

Bajcsy A, Losey DP and O’Malley MK, et al. (2018) Learning from
physical human corrections, one feature at a time. In: Pro-
ceedings of the 2018 ACM/IEEE International Conference on
Human-Robot Interaction, HRI ’18, pp. 141–149. New York,
NY, USA: ACM. DOI: 10.1145/3171221.3171267.

Baker C, B Tenenbaum J and R Saxe R (2007) Goal inference as
inverse planning. In: Proceedings of the 29th Annual Con-
ference of the Cognitive Science Society.

Bobu A, Bajcsy A and Fisac JF, et al. (2020) Quantifying hy-
pothesis space misspecification in learning from human–
robot demonstrations and physical corrections. IEEE
Transactions on Robotics 36(3): 1–20.

Bobu A, Bajcsy A and Fisac JF, et al. (2018) Learning under mis-
specified objective spaces. In: Proceedings of The 2ndConference
on Robot Learning, Proceedings of Machine Learning Research
(eds A Billard, A Dragan and J Peters, et al.), pp. 796–805.
PMLR. http://proceedings.mlr.press/v87/bobu18a.html.

Bobu A, Wiggert M and Tomlin C, et al. (2021) Feature expansive
reward learning: Rethinking human input. In: Proceedings of
the 2021 ACM/IEEE International Conference on Human-
Robot Interaction, HRI ’21. New York, NY, USA: Associ-
ation for Computing Machinery, p. 216–224. DOI: 10.1145/
3434073.3444667.

Braziunas D and Boutilier C (2008) Elicitation of factored utilities.
AI Magazine 29(4): 79. https://ojs.aaai.org/index.php/
aimagazine/article/view/2203.

Brown D, Coleman R and Srinivasan R, et al. (2020) Safe imitation
learning via fast Bayesian reward inference from preferences.
In: Proceedings of the 37th International Conference on
Machine Learning, Proceedings of Machine Learning Re-
search (eds HD III and A Singh), pp. 1165–1177. PMLR.
http://proceedings.mlr.press/v119/brown20a.html.

Brown D, Goo W and Nagarajan P, et al. (2019) Extrapolating
beyond suboptimal demonstrations via inverse reinforcement
learning from observations. In: International Conference on
Machine Learning, 09-15 Jun, pp. 783–792. PMLR.

Brown DS, Cui Yand Niekum S (2018) Risk-aware active inverse
reinforcement learning. In: Conference on Robot Learning,
pp. 362–372. Zurich, Switzerland: PMLR.

Choi J and Kim KE (2011) Inverse reinforcement learning in
partially observable environments. Journal of Machine
Learning Research 12: 691–730.

Choi J and Kim KE (2013) Bayesian nonparametric feature con-
struction for inverse reinforcement learning. In: Twenty-Third
International Joint Conference on Artificial Intelligence.

Christiano PF, Leike J and Brown T, et al. (2017) Deep rein-
forcement learning from human preferences. In: Guyon I,
Luxburg UVand Bengio S, et al. (eds.) Advances in Neural
Information Processing Systems, Vol. 30. Curran Asso-
ciates, Inc. https://proceedings.neurips.cc/paper/2017/file/
d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf.

Coumans E and Bai Y (2016–2019) Pybullet, a python module for
physics simulation for games, robotics and machine learning.
http://pybullet.org.

Dragan AD, Muelling K and Bagnell JA, et al. (2015) Movement
primitives via optimization. In: 2015 IEEE International
Conference on Robotics and Automation (ICRA). may,
pp. 2339–2346. DOI:10.1109/ICRA.2015.7139510.

Finn C, Levine S and Abbeel P (2016) Guided cost learning: Deep
inverse optimal control via policy optimization. In: Pro-
ceedings of the 33rd International Conference on Interna-
tional Conference on Machine Learning - Volume 48,
ICML’16. New York, NY, USA: JMLR.org, p. 49–58.

Fisac JF, Bajcsy A and Herbert SL, et al. (2018) Probabilistically
safe robot planning with confidence-based human predic-
tions. Robotics: Science and Systems (RSS).

Fridovich-Keil D, Bajcsy A and Fisac JF, et al. (2019) Confidence-
aware motion prediction for real-time collision avoidance.
International Journal of Robotics Research.

Fu J, Luo K and Levine S (2018a) Learning robust rewards with
adverserial inverse reinforcement learning. In: International
Conference on Learning Representations. https://openreview.
net/forum?id=rkHywl-A-.

Fu J, Singh A and Ghosh D, et al. (2018b) Variational inverse
control with events: A general framework for data-driven
reward definition. arXiv preprint arXiv:1805.11686.

Hadfield-Menell D, Milli S and Abbeel P, et al. (2017) Inverse reward
design. In: Guyon I, Luxburg UV and Bengio S, et al. (eds.)
Advances in Neural Information Processing Systems, volume
30. Red Hook, NY, USA: Curran Associates, Inc. https://
proceedings.neurips.cc/paper/2017/file/32fdab6559cdfa
4f167f8c31b9199643-Paper.pdf.

Hart SG and Staveland LE (1988) Development of nasa-tlx (task
load index): Results of empirical and theoretical research. In:
Hancock PA andMeshkati N (eds.)HumanMental Workload,
Advances in Psychology. North-Holland, Vol. 52, 139–183.
DOI: 10.1016/S0166-4115(08)62386-9.

Haug L, Tschiatschek S and Singla A (2018) Teaching inverse
reinforcement learners via features and demonstrations. In:
Advances in Neural Information Processing Systems. Red
Hook, NY, USA: 8464–8473.

Ibarz B, Leike J and Pohlen T, et al. (2018) Reward learning from
human preferences and demonstrations in atari. In: Bengio S,
Wallach H and Larochelle H, et al. (eds.) Advances in Neural
Information Processing Systems. Curran Associates, Inc.,
Vol. 31, 8011–8023. https://proceedings.neurips.cc/paper/
2018/file/8cbe9ce23f42628c98f80fa0fac8b19a-Paper.pdf.

Jain A, Sharma S and Joachims T, et al. (2015) Learning pref-
erences for manipulation tasks from online coactive feedback.
The International Journal of Robotics Research 34(10):
1296–1313.

Javdani S, Admoni H and Pellegrinelli S, et al. (2018) Shared
autonomy via hindsight optimization for teleoperation and
teaming. The International Journal of Robotics Research
37(7): 717–742. DOI:10.1177/0278364918776060.

Jaynes ET (1957) Information Theory and Statistical Mechanics.
American Physical Society, 620–630. DOI:10.1103/PhysRev.
106.620.

Bobu et al. 517

http://proceedings.mlr.press/v78/bajcsy17a.html
http://proceedings.mlr.press/v78/bajcsy17a.html
https://doi.org/10.1145/3171221.3171267
http://proceedings.mlr.press/v87/bobu18a.html
https://doi.org/10.1145/3434073.3444667
https://doi.org/10.1145/3434073.3444667
https://ojs.aaai.org/index.php/aimagazine/article/view/2203
https://ojs.aaai.org/index.php/aimagazine/article/view/2203
http://proceedings.mlr.press/v119/brown20a.html
https://proceedings.neurips.cc/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
http://pybullet.org
https://doi.org/10.1109/ICRA.2015.7139510
https://openreview.net/forum?id=rkHywl-A-
https://openreview.net/forum?id=rkHywl-A-
https://proceedings.neurips.cc/paper/2017/file/32fdab6559cdfa4f167f8c31b9199643-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/32fdab6559cdfa4f167f8c31b9199643-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/32fdab6559cdfa4f167f8c31b9199643-Paper.pdf
https://doi.org/10.1016/S0166-4115(08)62386-9
https://proceedings.neurips.cc/paper/2018/file/8cbe9ce23f42628c98f80fa0fac8b19a-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/8cbe9ce23f42628c98f80fa0fac8b19a-Paper.pdf
https://doi.org/10.1177/0278364918776060
https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1103/PhysRev.106.620

Levine S, Popovic Z and Koltun V (2010) Feature construction for
inverse reinforcement learning. In: Advances in Neural In-
formation Processing Systems. 1342–1350.

Levine S, Popovic Z and Koltun V (2011) Nonlinear inverse
reinforcement learning with gaussian processes. In: Advances
in Neural Information Processing Systems. 19–27.

Lopes M, Melo F and Montesano L (2009) Active learning for
reward estimation in inverse reinforcement learning. In:
Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Berlin, Heidelberg:
Springer, 31–46.

Ng A and Russell S (2000) Algorithms for inverse reinforcement
learning. International Conference on Machine Learning
(ICML) 0: 663–670. DOI: 10.2460/ajvr.67.2.323.

Osa T, Pajarinen J and Neumann G, et al. (2018) An algorithmic
perspective on imitation learning. Foundations and Trends in
Robotics 7(1–2): 1–179.

Ratliff N, Bradley DM and Chestnutt J, et al. (2007) Boosting
structured prediction for imitation learning. In: Advances in
Neural Information Processing Systems. 1153–1160.

Ratliff ND, Bagnell JA and Zinkevich MA (2006) Maximum
margin planning. In: Proceedings of the 23rd International
Conference on Machine Learning, ICML ’06. New York, NY,
USA: Association for Computing Machinery, p. 729–736.
DOI: 10.1145/1143844.1143936.

Reddy S, Dragan A and Levine S, et al. (2020a) Learning human
objectives by evaluating hypothetical behavior. In: ICML.

Reddy S, Dragan AD and Levine S (2020b) SQIL: imitation
learning via reinforcement learning with sparse rewards. In:
8th International Conference on Learning Representations,

ICLR 2020, Addis Ababa, Ethiopia, 26–30 April 2020.
https://openreview.net/forum?id=S1xKd24twB.

Russell S and Norvig P (2002) Artificial intelligence: a modern
approach.

Sadigh D, Sastry SS and Seshia SA, et al. (2016) Information
gathering actions over human internal state. In: 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS). pp. 66–73. DOI: 10.1109/IROS.2016.7759036.

Schulman J, Ho J and Lee AX, et al. (2013) Finding locally optimal,
collision-free trajectories with sequential convex optimization.
In: Robotics: Science and Systems. Citeseer, Vol. 9, pp. 1–10.

Vapnik V (2013) The Nature of Statistical Learning Theory.
Springer science & business media.

Vernaza P and Bagnell D (2012) Efficient high dimensional max-
imum entropy modeling via symmetric partition functions. In:
Advances in Neural Information Processing Systems. 575–583.

Von Neumann J and Morgenstern O (1945) Theory of Games and
Economic Behavior. Princeton, NJ: PrincetonUniversity Press.

Wulfmeier M, Wang DZ and Posner I (2016) Watch this: Scalable
cost-function learning for path planning in urban environ-
ments. In: 2016 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS). Daejeon, Korea,
October 9-14, 2089–2095.

Ziebart BD, Maas A and Bagnell JA, et al. (2008) Maximum
entropy inverse reinforcement learning. In: Proceedings of the
23rd National Conference on Artificial Intelligence - Volume
3, AAAI’08. AAAI Press, pp. 1433–1438. http://dl.acm.org/
citation.cfm?id=1620270.1620297.

Zurek M, Bobu A and Brown DS, et al. (2021) Situational con-
fidence assistance for lifelong shared autonomy.

518 The International Journal of Robotics Research 41(5)

https://doi.org/10.2460/ajvr.67.2.323
https://doi.org/10.1145/1143844.1143936
https://openreview.net/forum?id=S1xKd24twB
https://doi.org/10.1109/IROS.2016.7759036
http://dl.acm.org/citation.cfm?id=1620270.1620297
http://dl.acm.org/citation.cfm?id=1620270.1620297

	Inducing structure in reward learning by learning features
	1. Introduction
	2. Related Work
	2.1. Feature representations in reward learning
	2.2. Learning features

	3. Problem Formulation
	4. Algorithmic Approach: Feature Learning
	4.1 Feature traces
	4.2 Learning a feature function
	4.2.1 Monotonicity along feature traces
	4.2.2 Start/end feature value equivalence

	4.2.3 Incorporating relative values

	5. Algorithmic Approach: Reward Learning
	5.1 Offline FERL
	5.1.1 Creating the feature set
	5.1.2 Offline reward learning

	5.2 Online FERL
	5.2.1 Online reward update
	5.2.2 Confidence estimation

	6. Experiments: Learning Features
	6.1 Expert users
	6.1.1 Experimental design
	Manipulated variables
	Dependent measures

	Hypotheses
	6.1.2 Qualitative results
	6.1.3 Quantitative analysis
	6.1.4 Summary

	6.2 User study
	6.2.1 Experimental design
	Manipulated variables
	Dependent measures
	Participants

	Hypotheses
	6.2.2 Analysis
	Objective
	Subjective

	6.2.3 Summary

	7. Experiments: Online FERL
	7.1 Expert users
	7.1.1 Experimental design
	Manipulated variables
	Dependent measures

	Hypotheses
	7.1.2 Qualitative comparison
	7.1.3 Quantitative analysis
	7.1.4 Summary

	7.2 Non-expert users
	7.2.1 Experimental design
	Manipulated Variables
	Dependent measures

	Hypothesis
	7.2.2 Analysis
	7.2.3 Summary

	8. Experiments: Offline FERL
	8.1 Expert users
	8.1.1 Experimental design
	Manipulated variables
	Dependent measures

	Hypothesis
	8.1.2 Qualitative comparison
	8.1.3 Quantitative analysis
	8.1.4 Summary

	8.2 Non-expert users
	8.2.1 Experimental design
	Manipulated variables
	Dependent measures
	Hypotheses

	8.2.2 Analysis
	8.2.3 Summary

	9. Discussion
	Implications for online reward learning
	Implications for learning complex rewards from demonstrations
	Limitations and future work

	Acknowledgements
	Declaration of conflicting interests
	Funding
	ORCID iD
	Notes
	References

