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AbstractÐ Seaweed biomass presents a substantial opportu-
nity for climate mitigation, yet to realize its potential, farming
must be expanded to the expansive open oceans. However, in
the open ocean neither anchored farming nor floating farms
operating with powerful engines are economically viable. Recent
studies have shown that vessels can navigate with low-power
engines by going with the flow, utilizing minimal propulsion to
strategically leverage beneficial ocean currents. In this work,
we focus on low-power autonomous seaweed farms and design
controllers that maximize seaweed growth by taking advantage
of ocean currents. We first introduce a Dynamic Programming
(DP) formulation to solve for the growth-optimal value function
when the true currents are known. However, in reality only
short-term imperfect forecasts with increasing uncertainty are
available. Hence, we present three additional extensions. Firstly,
we use frequent replanning to mitigate forecast errors. For
that we compute the value function daily as new forecasts
arrive, which also provides a feedback policy that is equivalent
to replanning on the forecast at every time step. Second, to
optimize for long-term growth, we extend the value function
beyond the forecast horizon by estimating the expected future
growth based on seasonal average currents. Lastly, we introduce
a discounted finite-time DP formulation to account for the
increasing uncertainty in future ocean current estimates. We
empirically evaluate our approach with 30-day simulations of
farms in realistic ocean conditions. Our method achieves 95.8%
of the best possible growth using only 5-day forecasts. This
confirms the feasibility of using low-power propulsion to operate
autonomous farms in real-world conditions.

I. INTRODUCTION

Recent research has shown promising applications of sea-

weed biomass for climate mitigation. It can be used as human

food, as cattle feed that reduces methane emissions [1], for

biofuel and plastic [2], and for carbon capture i.e. when

the biomass is sunk to the ocean floor, it removes carbon

dioxide from the atmosphere [3]. To deliver on this promise,

production must scale by expanding seaweed farming from

labor-intensive operations near shore to automated solutions

utilizing the vast expanse of the open oceans [4]. But

conventional farming becomes economically infeasible in

deeper waters as anchoring costs increase with depth [5].
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Fig. 1: Our method maximizes long-term growth on autonomous
seaweed farm that operate by harnessing ocean currents. We solve
for the value function J∗

Forecast that is long-term growth-optimal
under the forecast with dynamic programming. We first compute
the expected 25-day growth after the forecast based on historical
average currents (1) and then use it to regularly solve for the
value function over the next 5 days using daily current forecasts
(2). Applying the induced policy πForecast as feedback controller
ensures high growth despite imperfect short-term forecasts.

A promising solution could be non-tethered, autonomous

seaweed farms that roam the oceans while growing seaweed

[6], [7]. These floating farms needs to be able to control

their position to prevent stranding, colliding with ships, or

drifting to nutrient-depleted waters. While they could be

steered with powerful ship engines, the power and hence

energy costs are prohibitively high due to the drag force

scaling quadratically with the relative velocity of the farm.

In our recent work, we demonstrated that an Autonomous

Surface Vehicle (ASV) can navigate reliably by going with

the flow, using its minimal propulsion (0.1m
s

) strategically to

nudge itself into ocean currents ([0−2m
s
]) that drift towards

its destination [8], [9]. This work has been extended to reduce

the risk of stranding [10] and to fleets of vessels that navigate

while staying connected in a local communication network

[11]. In this paper, we use this low-power steering paradigm

for operating seaweed farms. Our objective is to maximize

seaweed growth along the trajectory of the farms building

upon prior research on optimal deterministic autonomous

sea farming [12], [13]. From the control perspective, there

are four key challenges that we need to tackle. First, the

currents are non-linear and time-varying. Second, in realistic

settings, only coarse uncertain forecasts are available [14]±



[18]. Third, the farm itself is underactuated by which we

mean that its propulsion is smaller than the surrounding

currents, so it cannot easily compensate for forecast errors.

Lastly, we want to maximize seaweed growth over weeks

but forecasts from the leading providers are only 5-10 days

long [15], [16] and the uncertainty for long-time predictions

is high [19], [20]. In a nutshell, we are tackling long-term

horizon optimization of a state-dependent running cost with

an underactuated agent in non-linear time-varying dynamics

under uncertainty that increases over time. The long-term

dependency of seaweed growth means the objective cannot

easily be decomposed into multiple short-term objectives.

A. Related Work

Various approaches for time- and energy-optimal path

planning exist for non-linear, time-varying dynamics like

ocean currents [21]±[37]. In the context of navigating within

known currents or flows, researchers have derived Hamilton-

Jacobi (HJ) reachability equations for exact solutions [21]±

[23], non-linear programming [24], [38], evolutionary al-

gorithms [25], and graph-based search methods [26], [28],

[36], [39]. However, the last three techniques are prone

to discretization errors and the non-convex nature of the

problem, can lead to infeasibility or solvers getting stuck

in local minima. In contrast, DP based on the HJ equations

can solve the exact continuous-time control problem.

There is only a little research that focuses on maximizing

seaweed growth. In [12], the authors maximize seaweed

harvesting using autonomous vessels in varied settings. They

use a 3D HJ reachability framework in which the harvesting

state is augmented into the third dimension. To find the path

with maximum growth, they run forward reachability in the

state space for seaweed in 3D. This formulation needs to be

adapted for closed-loop control and for realistic operational

conditions accounting for ocean forecast uncertainties.

For managing current uncertainty, previous work optimizes

the expectation or a risk-function over a stochastic solution

of probabilistic ocean flows [40]. However, this is not yet

suitable for operational settings as it demands a principled

uncertainty distribution for flows but most operational fore-

casts are deterministic. At the same time, robust control

techniques, which aim to maximize the objective even in

the face of worst-case disturbances, are not suitable when

considering realistic error bounds, as the forecast error often

equals or exceeds our low propulsion capabilities. Thus,

to mitigate forecast inaccuracies, frequent replanning in a

Model Predictive Control (MPC) fashion has been proposed

using either non-linear programming [41], [42] or employing

the HJ value function as feedback policy [8], which offers

the benefits of being both fast and optimal. An emergent

approach is to use Reinforcement Learning (RL) to learn how

to best operate stratospheric balloons despite wind forecast

uncertainty [37], [43]. RL is suitable for their short-term

objective of station keeping and it is unclear if this works

for long-term objectives such as ours.

In order to address the increasing complexity associated

with long-time horizons, problems are frequently divided

into multiple subproblems using graph-based methods or

hierarchical RL [44], [45]. These approaches are appropriate

for combinatorial optimization problems, where dividing and

conquering in subtasks is effective. However, this is not

suitable for our problem involving continuous state space

and long-time dependencies. A potential solution to handle

growing uncertainty over time is to discount future rewards.

This is common in RL settings [46], [47].

B. Overview of Method & Contributions

In this paper, we make five main contributions towards

controllers that optimize seaweed growth on autonomous

seaweed farms over long periods.

First, we formulate maximizing a type of seaweed growth

as an optimization problem that can be solved exactly with

DP in the 2D spatial state of the system (Sec. III-A).

Compared to prior work using HJ reachability in 3D [12]

our assumptions lead to two advantages: significant reduction

of computational complexity; value function that can be

used as feedback policy to obtain the growth-optimal control

for all states and times, allowing frequent replanning in

MPC spirit for multiple farms which is critical when only

forecasts are known. Second, we extend the value function

beyond the forecast horizon which leads to a feedback policy

that optimizes for long-term optimal growth (Sec. III-C).

Third, to account for the growing uncertainty of the ocean

current estimates, we introduce finite-time discounting into

the DP formulation (Sec. III-D). Forth, we are the first to

run extensive empirical simulations of autonomous seaweed

farms in realistic current settings over 30 days. We first

investigate how different propulsion of the farms would affect

the best achievable seaweed growth with known currents.

We then evaluate how close different configurations of our

method can get to the best achievable growth when only

daily, 5-day forecasts are available (Sec. IV). Lastly, we

open-source our code-base which contains extensive features

to simulate, visualize, and study controllers for 2D vessels

operating by harnessing uncertain ocean currents.

In Sec. II we define the problem. Sec. III details the four

components of our method. Sec. IV contains the performance

evaluation of our methods and baselines and we conclude

with Sec. VI and outline future work.

II. PROBLEM STATEMENT

A. System Dynamics

We consider an autonomous seaweed farm as surface

vessel on the ocean with the spatial state x ∈ R
2. Let the

control input be denoted by u from a bounded set U ∈ Rnu

where nu is the dimensionality of the control. Then, the

spatial dynamics of the system at time t can be modelled

by the first order Ordinary Differential Equation (ODE):

ẋ=f(x,u, t) = v(x, t) + g(x,u, t), t ∈ [0, T ] (1)

where the movement of the vessel depends on the drift due

to the time-varying, non-linear flow field v(x, t) → R
2

and its control u. We choose a first-order model where the

drift and control directly influence the state, disregarding



inertial effects from motor acceleration and drag forces.

This is justified by the fact that high-drag seaweed farms

attain equilibrium velocity within a few minutes, a timescale

considerably shorter than our 30-day planning horizon.

While our method is generally applicable, we focus on

underactuated settings in the sense that most of the time

maxu ∥g(x,u, t)∥2 ≪ ∥v(x, t)∥2. We denote the spatial

trajectory induced by this ODE with ξ. For a vessel starting

at the initial state x0 at time t0 with control sequence u(·),

we denote the state at time t by ξ
u(·)
t0,x0

(t) ∈ R
2. The system

dynamics (Eq. 1) are assumed to be continuous, bounded,

and Lipschitz continuous in x,u [9].

Additionally, we assume the farm has seaweed mass m

which evolves according an exponential growth ODE:

ṁ=m ·Ψ(x, t), t ∈ [0, T ] (2)

where Ψ is the growth factor per time unit, e.g. 20 %
day

, which

depends on nutrients, incoming solar radiation, and water

temperature at the spatial state x and time t.

B. Problem Setting

The objective of the seaweed farm starting from x0 at t0
with seaweed mass m(t0) is to maximize the seaweed mass

at the final time T . This implies optimizing the growth over

its spatial trajectory ξ
u(·)
t0,x0

.

max
u(·)

m(T ) = m(t0) + max
u(·)

∫ T

t0

m(s) ·Ψ(ξ
u(·)
t0,x0

(s), s)
︸ ︷︷ ︸

growth factor

ds (3)

If the currents v are known, our method (Sec. III) is

guaranteed to find the optimal value function from which

the optimal control u∗(·) and trajectory can be obtained.

However, in realistic scenarios only inaccurate, short-term

forecasts v̂FC are available at regular intervals. These differ

from the true flow v by the forecast error δ(x, t). Our goal

is then to determine a feedback policy π(x, t) that results

in a high expected seaweed mass E[m(T )]. Hence, in our

experiments (Sec. IV) we evaluate our method empirically

over a set of missions (x0, t) ∼ M and a realistic distribution

of true and forecasted ocean currents v, v̂FC ∼ V.

III. METHOD

Our method consists of a core DP formulation that op-

timizes seaweed growth when the currents are known and

three extensions to get a feedback policy π that performs well

over long-time horizons when only forecasts are available.

We first introduce the core DP formulation to obtain the

growth-optimal value function (Sec. III-B). Then we show

how it can be used as feedback policy π that is equivalent to

replanning at every time step (Sec. III-C). Next, we show

how this can be extended beyond the forecast horizon (Sec.

III-C). Lastly, we introduce a finite-time discount factor in

the DP formulation (Sec. III-D).

A. Maximizing Seaweed Mass With Known Dynamics

We use continuous-time optimal control where the value

function J(x,u(·), t) of a trajectory ξ is based on a state

and time-dependent reward R and a terminal reward RT :

J(x,u(·), t) =

∫ T

t

R(ξ
u(·)
t,x (s), s)ds+RT (ξ

u(·)
t,x (T ), T ).

Let J∗(x, t) = maxu(·) J(x,u(·), t) be the optimal value

function. Using DP we can derive the corresponding

Hamilton-Jacobi Partial Differential Equation (PDE) [48]:

−
∂J∗(x, t)

∂t
= max

u
[∇xJ

∗(x, t) · f(x,u, t) +R(x, t)] (4)

J∗(x, T ) = RT (x, T ). (5)

We can then numerically compute J∗(x, t) on a spatial

mesh by integrating the PDE backwards in time [49].

Next, we define the reward R and terminal reward RT

to maximize m(T ). One approach is to solve the PDE in

an augmented state space xaug = (x,m)⊤ ∈ R
3. If we set

RT =0 and define the reward as R=m ·Ψ(x, t), the value

function is our objective (Eq. 3). However, the computational

complexity of solving for J∗ scales rapidly with the state

dimension. Hence, we want a reward R that does not depend

on m as augmented state. For that, we introduce the variable

η = ln(m) with the new dynamics η̇ = ṁ
m

= Ψ(x, t).
As η(m) is strictly increasing in m, the control u∗(·) that

maximizes η(T ) is equivalent to u∗(·) maximizing m(T ).
We can then reformulate Eq. 3 to η(T ):

max
u(·)

η(T ) = η(t0) + max
u(·)

∫ T

t0

Ψ(ξ
u(·)
t,x (s), s) ds. (6)

By setting the reward to R = Ψ(x, t) the optimal value

function captures this optimization without requiring m:

J∗(x, t) = max
u(·)

∫ T

t

Ψ(ξ
u(·)
t,x (s), s) ds. (7)

We then solve the HJ PDE for the growth-optimal J∗(x, t) in

the spatial state x and obtain u∗(·) and the trajectory ξ
u∗(·)
t0,x0

that maximize m(T ) at lower computational cost. We can

convert the value of J∗(x0, t0) to the final seaweed mass of

the optimal trajectory starting at x0, t0 with m(t0):

m(T ) = m(t0) · e
∫

T

t0
Ψ(ξ

u
∗(·)

t0,x0
(s),s) ds

= m(t0) · e
J∗(x0,t0).

B. Feedback Policy Based on Regular Forecasts

The value function J∗ from Sec. III-A allows us to

compute the optimal control u∗(x, t) for all x, t and hence

a feedback policy π(x, t) for the vessel or multiple vessels

in the same region [8]. This policy is the optimizer of the

Hamiltonian (right side Eq. 4):

π(x, t) = argmax
u∈U

f(x,u, t) · ∇xJ
∗(x, t), (8)

which can often be computed analytically depending on

g(x,u, t). While π is optimal if J∗ is based on the true

currents v, it can also be applied when imperfect forecasts

v̂FC were used to compute the value function J∗
v̂FC

(x, t).
In that case, an agent at state x executing πv̂FC

(x, t) will

find itself at a different state x′ than anticipated as v differs

from v̂FC . But the control that would be growth optimal

under v̂FC can again be computed with πv̂FC
(x′, t + ∆t).

Applying πv̂FC
closed-loop is hence equivalent to full-time

horizon re-planning with v̂FC at each time step. This notion



of re-planning at every time step at a low computational

cost ensures good performance despite forecast errors [8].

J∗
v̂FC

(x, t) can be updated daily when new forecasts arrive.

C. Reasoning Beyond the Forecast Horizon

As the growth cycles of seaweed typically spans months,

our aim is to maximize the seaweed mass at an extended

future time Text after the final time of the 5-day forecast TFC .

A principled way to reason beyond the planning horizon

is to estimate the expected growth our seaweed farm will

experience from the state ξ
u(·)
t,x (TFC) onward and add this

as terminal reward RT to Eq. 7.

J
∗

v̂FC ,ext(x, t) = J
∗

v̂FC ,TFC
(x, t)+E

[

J
∗

Text
(ξ

u(·)
t,x (TFC), TFC)

]

J∗
v̂FC ,TFC

(x, t) = max
u(·)

∫ TFC

t

Ψ(ξ
u(·)
t,x (s), s) ds (9)

where J∗
v̂FC ,TFC

(x, t) is the growth a vessel starting from

x at t will achieve at TFC and E

[

J∗

Text
(ξ

u(·)
t,x (TFC), TFC)

]

estimates the additional growth from TFC to Text. The

expectation is over the uncertain future ocean currents.

We propose to estimate E
[

J∗
Text

]

by computing the value

function J∗
v̄,Text

based on monthly average currents v̄ for the

region using Sec. III-A. To compute J∗
v̂FC ,ext we then solve

Eq. 4 with RT (x, TFC) = J∗
v̄,Text

(x, TFC).

D. Finite-time Discounting to Mitigate Uncertainty

As the oceans are a chaotic system, the uncertainty of the

forecasted ocean currents increases over time. We can incor-

porate this increasing uncertainty in the value function by

using the finite-time discounted optimal control formulation:

J
τ (x,u(·), t) =

∫ T

t

e
−(s−t)

τ R(ξ
u(·)
t,x (s), s) ds+RT (ξ

u(·)
t,x (T ), T ),

where τ is the discount factor. The smaller τ the more future

rewards are discounted. We derive the corresponding HJ PDE

by following the steps in [47] and in place of Eq. 4 we obtain:

∂J∗,τ (x, t)

∂t
= −max

u

[∇xJ
∗,τ
· f(x,u, t) +R(x, t)]+

J∗,τ (x, t)

τ

E. Summary Control Algorithm Variations

All variations of our method are feedback policies π de-

rived from a value function (Sec. III-B). The four variations

differ only in how the value function is computed. When the

true currents v are known we compute J∗ (Eq. 7) for optimal

control. When only forecasts v̂FC are available, we calculate

the J∗
v̂FC

for planning horizons up to the end of the forecasts

TFC and update it as new forecasts become available (Sec.

III-B). Thirdly, to optimize for growth until Text > TFC we

calculate an extended value function J∗
v̂FC ,ext (Sec. III-C)

using average currents (v̂FC + v̄). Lastly, we can discount

future rewards with J∗,τ (Sec. III-D) in any of the above

value functions. In Algorithm 1 we detail the discounted,

long-term version as it contains all components.

IV. EXPERIMENTS

In this section, we empirically evaluate various settings

of our method for operating an autonomous seaweed farm

in realistic ocean currents and growth conditions over T=30

Algorithm 1: Discounted HJ Closed-loop Control

Input: Forecast Flow(s) v̂FC , t = 0, x(t) = x0, average
Flows v̄, discount τ , plan until Text

1 Compute J
∗,τ

v̄,Text
using v̄ (Sec. III-C);

2 while t ≤ T do
3 if new forecast v̂FC available then
4 Compute J

∗,τ

v̂FC ,ext (Sec. III-C);

5 ut = π
∗,τ

v̂FC ,ext(xt, t); using J
∗,τ

v̂FC ,ext (Sec. III-B)

6 x(t+∆t) = x(t) +
∫ t+∆t

t
f(ut, x(s), s) ds;

7 t← t+∆t;

days. Our farm has actuation g(x,u, t) = u with varying

umax. We open-sourced the code for our simulator and

controllers for others to replicate results and build on 1.

We run two experiments. First we investigate how varying

the propulsion umax impacts the best achievable seaweed

growth under known currents v and compare it to the growth

achieved by 30-day planning without discounting relying on

daily, 5-day forecasts v and average currents v̄ (Sec. IV-

B.1). Second, we fix the propulsion to umax =0.1m
s

and

evaluate how the planning horizon and discounting in our

method affect growth and how close we can get to the best

achievable growth while relying on daily forecasts v and

average currents v̄ (Sec. IV-B.2). The experimental setup for

both is the same and will be explained next.

A. Experimental Setup

1) Seaweed Growth Model: Macroalgae growth depends

on the species, the water temperature, solar irradiance, and

dissolved nutrient concentrations, specifically nitrate (NO3)
and phosphate (PO4) [12]. We use the model of the Net

Growth Rate (NGR) of Wu et al. [50] and temperate species

parameters from [51], [52]. In this model, the time-dependent

NGR is determined by the growth rate rgrowth and the

respiration rate rresp caused by metabolism as:

ṁ(t)=m(t) ·NGR(t)=m(t) ·(rgrowth(t)−rresp(t)). (10)

Fig. 1 shows the NGR for our region at the apex of the sun’s

motion in January 2022.

2) Realistic Ocean Forecast Simulation: In realistic op-

erations the vessel receives daily forecasts for replanning.

In our simulations, we use Copernicus [16] hindcasts as true

currents v and mimic daily 5-day forecasts v̂FC by giving the

planner access to a 5-day sliding time window of HYCOM

[53] hindcasts. As in our previous work [54] we find that

the forecast error δ with this setting is comparable to the

evaluated forecast error of HYCOM [14] in key metrics. To

estimate the expected growth beyond the forecast horizon of

v̂FC (Sec. III-C) we use 1
6 th deg seasonal averages v̄ of the

ocean currents from Copernicus 2021.

3) Large Scale Mission Generation: We simulate opera-

tions in the southeast Pacific due to high nutrient densities.

For a large representative set of missions M, we sampled

1325 tuples (x0, t0,m(t0) = 100kg), uniformly distributed

in time between January and October 2022 and across the

1https://github.com/MariusWiggert/OceanPlatformControl

https://github.com/MariusWiggert/OceanPlatformControl


controller planning horizon Text discount factor τ

w/o discount (v) 30 days -
floating - -

greedy 1 hour (v̂FC ) 1 hour -
greedy 5 days (v̂FC ) 5 days -

w/o discount (v̂FC + v̄) 30 days -
w/ discount I (v̂FC + v̄) 30 days 1.296.000
w/ discount II (v̂FC + v̄) 30 days 1.728.000

TABLE I: We compare various controller settings.

region of longitude [-130, -70]°W and latitude [-40, 0]°S.

This allows for varying current distributions. As our method

is not aware of land obstacles we had 290 missions where

at least one of the controllers stranded or left the simulation

region. While stranding can be avoided by modifying the HJ

PDE as demonstrated in parallel work [10], we consider only

the remaining 1035 missions for our results.

4) Evaluated Controllers: We evaluate our method in

different configurations categorized by: a) the ocean current

data used by the controller for planning, either the true

currents v or daily forecasts v̂FC and average currents v̄,

and b) the controller’s planning horizon Text over which it

optimizes growth, either the entire 30-day period or more

short term greedy (5-day and 1 hour). We also examine the

use of a discounted value function. We compare all con-

trollers against the scenario where the farms float passively.

An overview of the configurations is provided in Tab. I.

For long-term (Text=30 days) controllers, we compute the

growth-to-go after TFC , J∗
v̄,Text

(x, TFC), over the full area on

a coarse 1
6 ° grid, as illustrated in Fig. 1. The value function

J∗
v̂FC ,ext(x, t) used for the control policy is then computed

daily on new forecasts using a smaller 1
12 ° grid around the

current farm’s position (10° square).

5) Evaluation Metrics: Our objective is to maximize the

seaweed mass at the end of each mission m(T ). Additionally,

we compute the relative improvement in final seaweed mass

by normalizing within each mission with the baseline final

mass. We then present the average relative improvement

across all missions which allows us to gauge how much

more/less biomass a specific controller can grow above the

baseline. This is important as the start x0 of a mission is

a major indicator of achievable growth as illustrated in Fig.

3. As baselines we use either passively floating or the best

achievable growth based on the true currents v.

B. Experimental Results

1) How does varying propulsion affect growth?: We vary

the maximum propulsion umax of the farm and evaluate

how this impacts the best achievable seaweed growth under

known currents v. Fig. 2 and Tab. II compare the final

seaweed mass distributions for different propulsion levels,

starting with passively floating. We observe that the average

seaweed growth scales almost linearly with umax, yielding

between 15% and 12% more biomass per 0.1m
s

propulsion.

We also compare how much growth our method w/o discount

(v̂FC + v̄) achieves with varying propulsion. As expected

this achieves slightly less biomass (≈95-96% of v) due to

forecast errors for all propulsion levels. For higher umax

Fig. 2: The best achievable seaweed mass given v increases linearly
with umax. Operating with our long-term control method using
forecasts v̂FC and average currents v̄ achieves ≈ 95% of growth.

Fig. 3: We sample a diverse set of starts (x0, t0) for seaweed farms
to empirically evaluate our controllers. The colorized starts show the
best achievable seaweed mass after 30 days using umax = 0.1m

s
.

the gap is slightly smaller, possibly because the farm can

better compensate for forecast errors. Nonetheless, even

small propulsion of umax=0.1
m
s

enables 9.6% more biomass

than a passively floating farm.

The start x0 of a mission significantly influences 30-

day growth, as shown in Fig. 3. High-growth missions are

situated in the east and south of our region, aligning with

nutrient-rich areas (see Fig. 1).

umax planning input rel. growth final seaweed mass

0.0m
s

(floating) 100% 145.29kg±100.30kg

0.1m
s

v 115.38% 166.45kg±109.67kg
v̂FC + v̄ 109.62% 159.29kg±107.46kg

0.2m
s

v 128.69% 182.04kg±115.11kg
v̂FC + v̄ 121.29% 173.72kg±112.94

0.3m
s

v 141.27% 194.98kg±117.39kg
v̂FC + v̄ 133.28% 187.01kg±116.60kg

0.4m
s

v 153.71% 206.96kg±118.34kg
v̂FC + v̄ 145.79% 199.50kg±118.09kg

0.5m
s

v 165.79% 218.10kg±118.59kg
v̂FC + v̄ 158.14% 210.78kg±117.72kg

TABLE II: Average seaweed growth for different maximum
propulsions umax. Planning on v is the best achievable which we
compare to using forecasted and average currents (v̂FC + v̄) without
discounting. Normalized per mission by passively floating.

2) The impact of planning horizon and discounting: As

the energy consumption scales cubically with umax, higher

propulsion may be economically infeasible for real-world

applications. Therefore, for this experiment we fix umax=
0.1m

s
. We investigate how different planning horizons and

discounting affect performance when operating with fore-



Fig. 4: 60-day Case Study: The greedy controller optimizes for 5-
day growth thereby navigating to the closest growth region. It fails
to anticipate the strong currents that push it out of the region. The
long-term controllers reach a more distant growth-richer area while
incurring short-term losses.

casts v̂FC and how close we can get to the best achievable

growth. We evaluate two greedy controllers that repeatedly

optimize over short Text (1h and 5-days) and compare to 30-

day time-horizon with different discounting settings (Tab. I).

Table III shows the results. As expected, both the greedy

and long-term controllers outperform passively floating. Sur-

prisingly, the performance of the 5-day greedy controller, is

close to that 30-day controllers. Using the discounted for-

mulation slightly improves the long-term controller, yielding

on average 95.77% of the best achievable growth.

controller umax=0.1m
s

relative growth final seaweed mass

w/o discount (v) 100% 168.45kg±109.67kg
floating (-) 88.20% 145.29kg±99.54kg

greedy 1 hour (v̂FC ) 92.24% 152.48kg±102.89kg
greedy 5 days (v̂FC ) 95.19% 157.78kg±106.04kg

w/o discount (v̂FC + v̄) 95.61% 158.84kg±106.71kg
w/ discount I (v̂FC + v̄) 95.77% 159.16kg±106.62kg

w/ discount II (v̂FC + v̄) 95.77% 159.17kg±106.66kg

TABLE III: Average seaweed growth of different controllers over
1035 missions. Normalized per mission by best achievable given v.

3) Case Study of 60-Day Scenario: We were intrigued

that the 5-day controller did achieve almost the same seaweed

growth as by planning over 30-days (Sec. IV-B.2). Hence,

we conducted a case study with planning and operating the

farm over 60 days instead of 30 days (Fig. 4). We find that

the greedy controller then aims for the nearest growth region,

while the long-term controller properly balances short-term

losses against the long-term gains of reaching a high-growth

region. This leads to the greedy controller being driven out

of the region while the long-term controller achieves close

to the best achievable growth (see sub-figure Fig. 4). The

zig-zags shape of the lines are due to day-night cycles.

V. DISCUSSION

As expected, controllers using forecasts v̂FC substantially

outperform a passively floating farm. Since seaweed growth

cycles span 60-90 days, we believe that long-term planning

is crucial. The myopic behavior of a greedy policy not only

leads it to navigate toward low growth regions in the vicinity

but also fails to account for the possibility of being pushed

out of good growth regions by strong currents, as in our 60-

day case study in Fig. 4. Therefore, we were surprised that

our 5-day optimizing controller was nearly on par with our

30-day optimizing controllers (Sect. IV-B.2).

We attribute this to several factors. First, the growth map

in our region exhibits a smooth gradient, which means

that even greedy controllers might move toward globally

optimal growth regions without planning for it. Second, in

our experimental evaluation, we do not consider missions

where any controller leaves the predefined region (Sec. IV-

A.3). This often occurs with greedy or floating controllers

(Fig. 4); consequently, the performance increase with long-

term controllers would be greater if we accounted for the

filtered missions. Third, the 30-day simulation time-frame

may not be enough to see the benefit of long-term planning

as the farm can only travel a limited distance within that

time. An indicator of this is the high variance in final seaweed

mass, which can be attributed to the inability of our vessels to

reach optimal growth regions in 30 days for many missions.

Hence, we anticipate that for longer simulation times and

higher propulsion umax we would see a higher performance

divergence and reduced variance for long-term controllers.

VI. CONCLUSION AND FUTURE WORK

In this work, we maximize seaweed growth on au-

tonomous farms that are underactuated and operate by

harnessing uncertain ocean currents. We first introduced a

2D DP formulation to solve for the growth-optimal value

function when the true currents are known. Next, we showed

how the value function computed on forecasted currents

can be used as feedback policy for multiple farms, which

is equivalent to replanning on the forecast at every time

step and hence mitigates forecast errors. As operational

forecasts are only 5 days long, we extended our method to

reason beyond the forecast horizon by estimating expected

future growth based on seasonal average currents. Lastly,

we presented a finite-time discounting DP PDE to account

for increasing uncertainty in ocean currents. We conducted

extensive empirical evaluations based on realistic ocean

conditions over 30 days. Our method achieved 95.8% of

the best achievable growth and 9.6% more growth than

passively floating despite its low propulsion of umax =
0.1m

s
and relying on daily 5-day forecasts. This confirms

the feasibility of harnessing ocean currents to operate low

propulsion autonomous seaweed farms.

A future direction is to learn the expected growth after

the forecast horizon using experience and approximate value

iteration [55] or a value network [56]. This could implicitly

learn the distribution shift between v̂FC and v. Another

direction is to make the discount factor state-dependent based

on the uncertainty of current predictions, which could be

estimated historically or forecast [57], [58]. Further, we want

to run experiments for time horizons longer than 30-days to

tease out the advantage of long-term planning. Lastly, we

plan to conduct field tests with our partner [6] to further

validate our method in real-world ocean conditions.
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